DSHOT信号を作ってみる。その2

前のを壊しまったので新たに発注していたNucleoボードが届きました。
実験を再開してモーターを逆転させてみようと思います。

左が新たに届いたNucleoボード。
右は壊したやつ。

前回「値として0~47のどれかを送ると逆転するはず」という様な事を書きましたが、結局何番なん?というと、やはり資料が見当たらないのでbetaflightのソースを眺める事にします。

探し当てたのはこれ。ソースツリーを~/Gitに置いたとして次の場所にあるファイルを見ると・・・
~/Git/betaflight/src/main/drivers/dshot_command.h

・・・こういう記述がありました。

 typedef enum {
DSHOT_CMDtypedef enum {
DSHOT_CMD_MOTOR_STOP = 0,
DSHOT_CMD_BEACON1,
DSHOT_CMD_BEACON2,
DSHOT_CMD_BEACON3,
DSHOT_CMD_BEACON4,
DSHOT_CMD_BEACON5,
DSHOT_CMD_ESC_INFO, // V2 includes settings
DSHOT_CMD_SPIN_DIRECTION_1,
DSHOT_CMD_SPIN_DIRECTION_2,
DSHOT_CMD_3D_MODE_OFF,
DSHOT_CMD_3D_MODE_ON,
DSHOT_CMD_SETTINGS_REQUEST, // Currently not implemented
DSHOT_CMD_SAVE_SETTINGS,
DSHOT_CMD_SPIN_DIRECTION_NORMAL = 20,
DSHOT_CMD_SPIN_DIRECTION_REVERSED = 21,
DSHOT_CMD_LED0_ON, // BLHeli32 only
DSHOT_CMD_LED1_ON, // BLHeli32 only
DSHOT_CMD_LED2_ON, // BLHeli32 only
DSHOT_CMD_LED3_ON, // BLHeli32 only
DSHOT_CMD_LED0_OFF, // BLHeli32 only
DSHOT_CMD_LED1_OFF, // BLHeli32 only
DSHOT_CMD_LED2_OFF, // BLHeli32 only
DSHOT_CMD_LED3_OFF, // BLHeli32 only
DSHOT_CMD_AUDIO_STREAM_MODE_ON_OFF = 30, // KISS audio Stream mode on/Off
DSHOT_CMD_SILENT_MODE_ON_OFF = 31, // KISS silent Mode on/Off
DSHOT_CMD_MAX = 47
} dshotCommands_e;

enamを使ってコマンド毎の番号を定義しています。注目したのは20番と21番。
20だと正転、21だと逆転する様に見えます。更にソースを眺めると、コマンドを送る時は10回繰り返して送っており、それ以降は指定された回転方向になりそうな雰囲気です。10回送るのは少しくらい伝送エラーが出ても確実に伝える様にだと思います。

そこでNucleoボードのGPIOにボタンを2個追加し、これらを押すと回転数信号の代わりに20と21の値を出す様にプログラムを変更しました。

そしてESCとモーターを接続し、逆転ボタンを押した後に回転させると・・・何も起らず同じ方向に回っています。
何か違うのかなー。

上記リストを見ているとDSHOT_CMD_BEACON1というコマンドもあります。これはたぶんモーターを機体発見ブザー代りに鳴らす時のアレみたいですね。
betaflightからはブザーの音色を5種類から選べるのに対し、上記コマンドもBEACON1~5まであるので間違いないでしょう。値として1番~5番を送ってやればモーターから音が鳴りそうです。
そこでさっき取り付けた2個のボタンを押せば1や2を送る様にプログラムを変更しました。
そして試すと・・・やっぱり鳴りません。

うーん。
betaflightのソースをもっと細かく見ていけば解るんでしょうけど結構大変ですよね。

そこでFCから出てくる信号をオシロスコープで見ながら機体発見ブザーを鳴らしてみます。反転信号だと一瞬なので波形を捕まえ難いですがブザーだと繰り返し発生するので捕まえやすいのです。そして以下の事が判りました。

まず今までDSHOTで送る16bitのデータはこう思っていました。
値とCRCの間の1bit(右のLSB側から5番目なので以後「5bit目」と呼びます)は通常は0でテレメトリを要求するとき(RPMフィルタで回転数を取り出す場合等)に1にする。・・・と色々なサイトに書いてあります・・・

Hパルス幅が長いと1、短いと0を表します。

しかし実際にFCが出しているブザーコマンドを見ると1になっていました・・・

どうやら制御コマンドを送る時は5bit目を1にする様です。
ならばNucleoボードでもこの通りの波形を作ってみると・・・
鳴りますねぇ。
そして予想通りBEACON1 と2で音程が変わります。
また普段機体発見ブザーを鳴らすとピッ、ピッと断続的に鳴るのは FCから断続的にコマンドをON/OFFしている訳では なく、ボタンを押し続ければESC側で断続させてくれる様ですね。
試した様子を動画で・・・

では同様に逆転コマンドの20番、21番も5bit目=1でやってみます。
これもちゃんと逆転しますねー。
逆転に設定しておき電源を入れ直すと正転に戻ります(もしかするとどっかに覚えてるんじゃないかと思ったけど、そんな事ないですね)。
これも動画で・・・

という事でコマンドを送る時は右から5bit目を1にするのが正しい様です。という事はテレメトリの場合はどうなんでしょう?一つ判っているのはFCでRPMフィルターをONにするとDSHOT信号のH/Lが逆転している様です。
って事はテレメトリは5bit目ではなくH/Lの極性で決まるのかな・・・
あと回転数の値は48~2047だと思っていますが、コマンドである事が5it目で決まるのなら回転値は47以下を使っても良さそうな気がします。

BetaflightでRPMフィルターONの波形

このあたりはもうちょっと調べる必要がありそうですね。

フライトコントローラーを自作してみる。

ドローンレースの練習をしていると色々なところを壊します。
ほいほい堂本舗は貧乏性なのでできる限り修理して再利用したり、また可能なところは自作してみたくなります。

という事でフライトコントローラーを作ってみたいと思います。フライトコントローラーとは一言でいうとマルチローター系の機体を制御するマイコンボードです。固定翼の飛行機は構造的に自立安定して飛行しますが、これと違ってマルチローターは特に制御しなければ安定して飛び続けられません。そこでジャイロや加速度センサーで機体の姿勢を検出しどのモーターをどの程度のパワーで回すかを決めるのがフライトコントローラー(以下FCと略す)です。

自作フライトコントローラーの構想

近年の(ホビー系の)FCは殆どがSTマイクロエレクトロニクス製のSTM32Fxx マイコンが使われています。これにジャイロ/加速度センサーを載せるのですがマイコンとの接続はSPIやI2Cですし、モーターを回すためのドライバ(ラジコン界ではESCという)へはPWM(およびその変形)で信号を送るので、ほぼマイコン工作で作れそうです。

またソフトについては優秀なオープンソースのファームウェアが多数出ているのでこれらを用いることができます。

といっても、いきなりプリント基板を作る勇気はないのでまずはマイコンボードを使って動作を確認してみます。マイコンボードにはSTM32F411 Nucleo-64を使う予定。

STM32F411 Nucleo-64

全体像はこのブロック図の様に考えています。このうち水色で囲んだ部分をここではフライトコントローラー(FC)と呼ぶ事にします。

実用的にレースで使うにはこの他にOSD(On Screen Display:FPVの映像に諸々の情報をスーパーインポーズして表示する機能)も必要になりますが、まずは飛べる事を確認出来た後でこれらも試したいと思います(実はOSD用ICも入手済)。

Betaflightをビルドする。

ファームウェアはいつも使っているBetaFlightを書き込む予定ですが、その前にファームウェアをビルドする環境を作っておこうと思います。
BetaFlightのビルドはUNIX環境上で行うのが基本となっている様で、Windows上のWSL(Windows Subsystem for Linux)でも実行できます。詳細はBetaflight Wikiのこのページに説明されており、この通りにやれば構築できました。
手順通りに構築するとWSL環境内の~/Git/Betaflightというディテクトリ以下にファイル一式ができています。更に下には~/Git/betaflight/src/main/targetというディレクトリがあり、ここには下図の様に各種FC毎の設定があります。

このディレクトリ下に今回作るFC用として’HOIHOIF411’というディレクトリを作るのですが、まずは似たFCである’MATEKF411’の内容を丸コピーし、そこから変更していくことにします。

HOIHOIF411ディレクトリの中にはtarget.mk、target.h、target.cの3本のファイルがあります。ここら辺の詳しい説明資料が見つからないのですが、この3本のファイルを変更するとそれぞれのFC固有のファームウェアが出来上がる様です。で、いろいろ試行錯誤した結果のファイルを添付しておきます。→HOIHOIF411.tar.gz

targetディレクトリの設定ファイルができたらカレントディレクトリを
~/Git/Betaflight に設定し、ここで’make HOIHOIF411’とコマンドを実行すると ~/Git/Betaflight/binの下にファームウェアが出来上がります。このファイルをBetaflightConfiguratorのファームフラッシャーを使って書き込んでやる訳です。

ジャイロ/加速度センサー

当初ジャイロ/加速度センサーにはモーション・フライトシミュレーターで使ったので手元にあった MPU6050ボードを使ってみました。市販のFCは大抵SPIで接続できるセンサーを使っていますがMPU6050はI2C接続専用です。一応これもBetaflightにサポートされているっぽいのですが、しかし何故かうまく接続できません。mbedで書いたプログラムだとセンサー値を取れるのですがBetaflightのファームからは取れないのです。

MPU6050ボード

そうこうしている内にポチッていたMPU6500ボードが届いたのでこれをSPIで接すると問題なく接続できました。 名前が似ていてややこしいですがMPU6500はSPIで接続するタイプで市販のFCでも結構使われています。
どのみち最終的にはMPU6500を使うつもりなのでこれで行きます。

MPU6500ボード


回路図

こんな感じで行こうと思います。
NucleoボードはArduino互換ソケットが付いているので、なるべくこれを利用する事で、Arduino用シールド基板を使って配線し易い様にします。
なおOSDは後で追加予定です。

機体

動作確認用に、息子が作って今は使っていないこの機体に乗せてみます。

製作

まずはブレッドボードで動作を確認して・・・

大体動作したのでArduino用シールド基板上に回路を載せて・・・

機体に乗せてみます。

飛ばしてみる

で、飛ばしてみると・・・一応浮き上がるのですが斜めに振動して止まりません。
原因調査中ですが、市販のFCに載せ変えても同じ様に振動するのでFCの問題ではないのかもしれません。
この続きは後日・・・