ハンズマン ガラクタ市2017秋

今日から恒例のハンズマン ガラクタ市です。
例によって朝から行ってまいりました。

到着したのは6:55ですが既にオープンしていました。どうやら前回あたりから10分程早く開店する様です。

HANDSMANガラクタ市2017秋_1

6:57分 既に駐車場はいっぱいです。

HANDSMANガラクタ市2017秋_2

店内の様子1

HANDSMANガラクタ市2017秋-3

店内の様子2 奥の通路に並んだテーブルにガラクタ市対象商品が積まれています。

会社に行かねばならないので適当なところでレジに進みます。しかしレジも込んでいて20分程度かかりました。

今回もあまりオオッという物は無かったのですが、それでも3000円分程買い込みました。
車に積んだところで撮影。

HANDSMANガラクタ市2017秋_4

車の荷室に並べて撮影。

HANDSMANガラクタ市2017秋_5

トラ柄のスポンジゴム。45円

HANDSMANガラクタ市2017秋_6

工具箱 600円

HANDSMANガラクタ市2017秋_7

分度器と三角定規。各30円。
よく子供に持っていかれるので2セットずつ購入。

HANDSMANガラクタ市2017秋_4

ねじは詰め合わせで一袋90円。以前は小袋のままで10円とかだったのですが今回は詰め合せです。なのであまり使わないねじも入っています。

HANDSMANガラクタ市2017秋_8

ロータリーツールセット 90円
今回一番の掘り出し物かもしれません。

という事で、このまま出勤します。

出勤して・・・

退社して・・・

で・・・・夜にまた行きました。ハンズマンは10時まで空いているのです。

HANDSMANガラクタ市2017秋_9

夜の部で購入。

溶接面180円ほか。
コルク版はレーザーで切ってコースターを作ってみようと思います。

ガラクタ市は10/30(月)迄ですが、いつものパターンだと日曜日になると良いものは殆ど残っていないので、ここ2~3日はマメにチェックしよと思います。

フライトシムのモーションシミュレータ化~5~

モーションシミュレータの座席にラダーペダルを固定するため、金具を切り貼りしたいのですが、先週の雨に続き今週末も台風がやってきて降ったり止んだりしているので外での作業が出来ません。
そこで近所のホームセンターハンズマンにある工作室で金具のカットと穴あけをしてきました(工作室での写真は撮り忘れました)。
切り終えたのがこれ。

Mostionsim6

座席に取付ける金具(切ったあと)。
3mm厚で幅40mm、各辺270mmのL型金具(1本170円)。
元々は建築用みたいです。

現状の座席にも同様の金具をフレームとして使っており、これに溶接する予定ですがハンズマンの工作室でも溶接はできないので晴れたら庭でやろうと思います。が、雨が止んだかなーと思って準備を始めるとまたポツポツと降ってきます。

てるてる坊主

 

晴れるのを待ちながら制御基板の続きを作る事にします。先日故障した基板切削CNCも調子よくなっており切削完了。

MotionSim6-2

切削を終えた基板の両面テープをスクレーパーで剥がします。

部品を実装しました。(一か所回路図段階でミスっておりパターンを修正しましたがこちらの面からだと見えないのでナイショ)

MostionSim6-3

実装も完了。

これくらいの配線量だとユニバーサル基板の方が手っ取り早いかもしれません。でもそこは趣味の世界です。 またArduino標準のピンヘッダ配置はユニバーサル基板がピッタリ納まる様になっていないという問題もあります。

基板を作った後で気づいたのですが、手元の古いArduinoUNOには無い端子を使う配線になっていました。I2C通信で使うSDA,SCL端子は現在のUNOでは端子が追加されて2か所にありますが古いUNOには1か所しかありません。

MotionSim6-4

ArduinoUNOのピンヘッダ新旧比較
(左の新しい方はバッタ物ですが・・・)
左下のAD4,AD5端子がSDA,SCLと兼ねており昔からある端子です。これに対し今のUNOでは右上にも同じ信号がSDA、SCLとして追加されています

仕方ないので新しい方(バッタ物)を使う事にします。

とかやっている間にAliExpressに何となく注文していた基板が届きました。
1枚108円で送料無料です。こんなのを使うのが一番簡単でした(いまさら今回のには使いませんが)。

MotionSim6-5

Arduinoシールド用ユニバーサル基板

 

何はともあれ基板が出来たのでブレッドボードを取り外して交換します。
だいぶスッキリしました。
基板上のトグルスイッチはマニュアルとオートの切替です。オート側にするとPCから仮想COMポート経由で制御でき、マニュアルにしておくと基板上の4つのタクトスイッチで動作させる事が出来ます。

MotionSim6-6

ブレッドボードから基板に変更してスッキリした図

そうこうしている内に雨が止んだ様です。日没まであまり時間がありませんが少しでも溶接作業を進めます。
といっても2本を接合しただけで日が暮れました。座席のフレームとの接合は後日行います。

MostionSim6-7

2本を接合。

少しずつしか進みませんが続けていきます。

基板切削CNC不調

フライトシミュレータのモーション化を進めていますが、次の作業としてラダーペダルフライトヨークを座席と一体にになる様に固定したいところです。この作業には鉄を切ったり貼ったりする予定なのですが先週末は天気が悪くて外での作業が出来ませんでした。

仕方ないので現在ブレッドボードのままであるコントロール回路の基板作成を始めたのです。いつもの様にKi-cadで図面を描き、ガーバーデータを作成してgynostemmaで切削データを作成しました。そして基板切削CNCをスタートさせてしばらくしたところでガタガタという音がし始めました。最初は送りねじの油切れかなとか思っていたらそのうちX軸が回らなくなり、同じところばかり削り始めたので非常停止ボタンを押して止めました。

どうやらX軸のドライバ基板とステッピングモーターをつなぐナイロンコネクタ付近が接触不良みたいです。このあたりをグリグリやるとX軸が回ったり止まったりします。結局配線中の1本が切れかかっているのを見つけたので半田で付け直しました。

そして再スタートしたら今度はY軸がガタガタと言って回らなくなりました。これもコネクタ回りの配線が切れかかっており、半田で付け直しました。

これで一応動作する様になったのですがコネクタ回りをしつこくグリグリやってみるともう一か所怪しいところがあり、これも半田で付け直しました。

ナイロンコネクタは電極をカシメて止めますが、このCNCを作った時はまだカシメ工具を持っておらず、適当な事をした記憶があります。それがいま一気に噴出したのでしょうか?
もしかすると今まで何回か切削を失敗した事があるのもこれが原因だったのかもしれません。

CNC配線

ナイロンコネクタの切れたところを半田で修理

 

このドライバ基板、今では考えられませんが当時市販のステッピングモータドライバが手に入らなかったのでPICマイコンとMOSFETで作りました。ユニポーラのモーターを3個駆動するのでMOSFETを12個並べており配線もぐちゃぐちゃです。色々ぶら下がっており、そりゃ配線切れも起こすってもんです。

CNC制御

CNC制御基板

 

以上の修理で今のところ普通に動作する様になったのですが、いつまた再発するか分かりません。コネクタの配線を全部やり直せばいいのですが、それよりもArduino+CNCシールドに変えようかと検討しています。

ちょっと前にレーザー加工機をArduino制御に変えようと思ってCNCシールドは購入していましたが、非常停止スイッチ、水流センサー、上蓋開閉センサー等の接続を考えていたら面倒になってそのままにしています。なのでこのCNCシールドを流用しようかと考えています。。。

CNC

まずは修理完了

ぼちぼちとやります。

 

フライトシムのモーションシミュレータ化~4~

前回FlightSimulatorXからデータを取出して座席の傾きを計算しArduinoに送るところまで来ました。引き続きArduino側でのスケッチを書いていきます。

PCからArduinoに送るデータフォーマット

PCからArduinoへはシンプルに下のフォーマットでデータを送ります。

ピッチ,バンク\n

第一フィールドが座席のピッチ、第二フィールドがバンク角で、それぞれ’度’単位の角度を10倍した整数で表します。10倍しているのは小数以下一桁までを整数で表し、少しでもArduino側の計算負荷を減らす目的です。

Arduino内での処理

Arduinoのスケッチではシリアルポートを定期的にチェックし、1行分のデータが来たらピッチとバンク角を取出します。そしてこの値を元にリニアアクチュエータの目標とする長さを左右それぞれ算出します。

また加速度センサーの値も定期的にチェックします。加速度センサーは座席裏側に取付けてあるので座席の傾きを示しており、この値から現在のリニアアクチュエータの長さを推定します。

あとはモータードライバーに対し、目標長と現在長の差が無くなる方向に動かす信号を送ればアクチュエータが動作して座席が目標角度になるという算段です。

実際にはアクチュエータが停止状態から動き出す時はPWMで徐々に加速し、目標に近づくと徐々に減速する事でなるべくスムーズな動作を目指しています。

なお当初、加速度センサーは座席の背板付近に取付けていました。しかしこれでは重力加速度による傾き検出以外に本当の加減速も検出してしまいます(軸から遠いので特に上下には大きく動く)。今回は傾きの情報だけ欲しいのでなるべく軸の近い場所に移動しました。

動かしてみる。

まだモニターもペダルもコントローラーも取り付けていませんが、とりあえず動作させてみます。
PC側でFSXを起動し、DOS窓から先日作ったデータ抽出プログラムを起動し、リダイレクトで仮想COMポートに送ります。

動画で・・・

最低限のところが動いた感じですが、なかなか楽しいです。
ペダルやコントローラを取付けていきます。

フライトシムのモーションシミュレータ化~3~

引き続きソフトを作っています。

SimConnectから得られる値について

モーションシミュレータではシミュレータ世界で体が受けるであろうGの方向を実世界の重力の方向に合わせる様に制御しようと思います。例えば離陸のために加速する時は後ろ向きにGが掛かるので座席を上向きに傾ける事で体にそれっぽい力が加わります。しかし以前の投稿で体にかかるGの方向がSimConnectから上手く取れない話を書きました。

SimConnectから得られる変数に「ACCELERATION BODY X(同様にY,Z)」と「ACCELERATION WORLD X(同様にY,Z)」という変数があります。
ドキュメントに詳しい説明が見当たりませんが、名前からするとこれらが体にかかる加速度およびワールド座標での加速度かと思います。しかしこれらの変数を表示させても妙に小さな値ですし思った様な変化をしていません。

下の4つのグラフは出来るだけ水平を保って右旋回を続けた時の変化です。
一番上のグラフは機体のピッチ、ロール、ヘディングを表します。単位はラジアンでヘディングの0(又は2π)は北を示しており、ノコギリ状のグラフになっているのは右方向に2回転した事を示します。

2番目のグラフは各方向への速度(単位はFeet/s)を示します。東西がvX、南北がvZなのでこの二つが90度位相がずれたサインカーブをほぼ描いており回転している事が判ります。

そして3番目のグラフが加速度を示すと思われる変数「ACCELERATION WORLD X(及びY,Z)」の値ですが、何を示しているのかよく分かりません。

そこで4番目のグラフに速度から算出した加速度をプロットしてみました。横軸が1秒ステップなので2番目のグラフの値を元に、それぞれ一つ前からの差を計算すればFeet/S2(フィート/毎秒毎秒)になるはずです。これだと最大120feet/S2で速度を90度ずらしたそれっぽい波形になっています。

・・・という事で速度の変化から計算した加速度を用いる事にします。
なお、この加速度に重力は含まれていないのでY軸方向に32.174feet/S2(=1G)足した上で機体座標に変換して座席の姿勢を決める事にします。

SimConnectの座標

SimConnectが出す値を調べた結果、各座標は下の様に表しているみたいです(座標変換するとき何度もこんがらがるので覚書き)。

MotionSim4-2

SimConnectの座標

以上で求めた座席の傾きをUSBのCOMポートに書き出し、後はArduinoでの処理となります。

フライトシムのモーションシミュレータ化~2~

フライトシミュレータのモーションシミュレータ化、まだくじけずに続けています。

アクチュエータ連結部のガタ減らし

リニアアクチュエータの連結部分の上側が特にガタが大きいので対策しました。この部分もキャスターの車輪を外したものを流用していて、元々の車輪の軸がΦ8でした。しかしリニアアクチュエータの取り付け穴はΦ6です。アクチュエータの穴を広げるか細い軸を用いる必要がありますが穴を広げると強度が落ちそうなので細軸を採用し、M6の半ねじボルト(のねじを切っていない部分)で連結しています。
Φ8の穴にΦ6の軸なので遊びが多くてガタつきます。何かいい方法はないかと物色していたらモノタロウでこんなものを発見。バイクのパーツを取付ける部品らしいです。

MositonSim3-1

キタコ ツバ付カラー

内径がΦ6.2、外形がΦ8.2。これを軸受けに挟み込んでみます。

MotionSim3-2

こんな感じ。外形Φ8.2はちょっと固いけど押し込めば入りました。

これで少しガタが減りました。まぁそもそもキャスター自体のガタもあり、こちらは改善できないんですが。

モータードライバー

そしてラダーペダルやフライトヨーク、PCモニターの取付け方法も考えねばなりませんが、これらは置いといて電気的なところを進めます。

モータードライバーは瞬間最大で4.5A流せるTB6643KQを用います。リニアアクチュエータは定格4Aという事になっていますが、実測すると(私が座った状態で)1Aちょっとしか流れてなかったので余裕だと思います。

MotionSim3-3

TB6643KQ。秋月電子で購入。

これを用いてドライバー基板を作っていきます。

MotionSim3-4

基板を削って・・・

MotionSim3-5

実装しました。

MotionSim3-6

放熱を兼ねて金属部分にねじ止めします。

フィードバック系

今回使用するリニアアクチュエータはDCモータに電流を流すだけの制御です。端まで行くとストップする仕組みは内蔵していますが、RCサーボやステッピングモータの様にオープンループで制御する訳にはいかず、何らかの方法で動作量を検出してフィードバックしなければなりません。 大体こういう時はボリューム(可変抵抗)を使いますが、今回の構造でボリュームを取付けるのは結構面倒に思えます。そこでこれを使ってみることにしました。

MotionSim-6

GY-521(6軸ジャイロMPU6050搭載)

だいぶ前にAliExpressで140円くらいで買ったジャイロ3軸+加速度3軸のセンサーです。座席に貼付けて加速度から傾きを検出しようという魂胆です(ジャイロは使いません)。

このセンサー、マイコンとはI2Cで接続します。センサー自体は3.3V系なので電源には降圧レギュレータが入っていて5V電源を接続できますが信号は3.3Vのままです。マイコンにはArduinoを使おうと考えていますがUNOだと5V系です。ProMiniなら3.3V版を保有していますが今回の用途はPCと常に通信するためFT232RL等のUSBシリアル変換回路を外付けする必要があり面倒です。

ところでArduinoのI2Cの使い方を調べていると5V系Arduinoを3.3VのI2Cデバイスに接続する場合はレベル変換回路を入れろとあちこちに書いてあります。でも本当にレベル変換が必要なのでしょうか?
I2Cはバス全体をプルアップしておき、各デバイスはオープンドレインでLに落とすことにより通信を行います。ならば3.3Vでプルアップしておけば少なくともデバイスを壊す事はない様に思えます。問題は5V系Arduinoが3.3VをHと認識してくれるかどうかですが、ATmea328Pのマニュアルを見ると入力のVIHは0.6VCCとなってるのでVCC=5Vの場合は3V以上ならHと認識してくれる筈です。H=3.3Vで通信すると0.3Vしか余裕が無いのは気持ち悪いですが実力はもう少し余裕があるでしょうし、実用上はイケるんではないでしょうか(今のところイケてます)。
実際の回路ではGY-521モジュール内で4.7KΩを経由して3.3V電源に接続されています。一方ArduinoUNOもデフォルトでは20K~60KΩで5V電源に接続されている様です。Arduinoのプルアップは切り離しもできる様ですが仮にそのまま動作させた場合、Arduino側を最悪値の20KΩで考えると・・・「3.3V—4.7KΩ—バス—20KΩ—5V」という接続にないります。この時バスには3.7Vが加わる事になりますがMPU6050の入力最大定格はVDD+0.5V(=3.8V)となっており、これもギリギリですが規格内です(それに実際に定格を大きく超えようとするとデバイス内の保護ダイオードが順方向になって電流が流れるので20Kのプルアップではそれ以上電圧を上げる事ができなくなり助かるはずという目論みもあります)。
・・・という事で5V系のUNOを使ってレベル変換無しでやってみようと思います(真似してトラブっても責任負えませんけどね)。

取付け

という事でArduino UNOとセンサーを取り付けたところです。まだブレッドボードなので、うまく行く様ならしっかりした基板に変更しようと思います。

MotionSim-8

Arduiono他一式、仮止めの図。

MotionSim-9

念のための非常停止スイッチ。どこに固定しましょう?

簡単なプログラムでモーターの制御とセンサーの読み出しが確認できたのであとは実際にPCから指定した角度に座席が動くプログラムを作っていきます。