HOI-Link:S-BUS→PC接続 完成

前回の続きです。前回は秋月電子のPIC18F14K50搭載基板をブレッドボードに挿して実験していました。今回は完成版として基板に収めるのでDIPパッケージで製作します。

まずKi-cadで回路図を書いて・・・

基板のパターンを作って・・・

片面基板なので表パターン(赤の配線)は実装時に導線で接続します。

CNCで削って基板を作ります。

FRISKケース(何年か前から大きくなった120%Booster版)に入れてみました。

寸法を合わせて作ったので当然ですがピッタリです。

ところでFRISKケースの場合ソケットを使ってマイコンを実装すると高すぎて蓋が閉まらなくなります。なので基板に直付けする前にブートローダーを書き込んでおきます(後からでも書けるけどブレッドボードに載せられる実装前の方がやりやすいので)。前に書いた9V電池書きこみ方式で・・・

006Pの9V電池書き込み方式

そして部品取り付け。
私のコントローラーはフタバのFASST方式ですが息子はFHSS方式なので受信機を取り替えられる様にします。最初はXHコネクタの3ピンを使うつもりでしたがL字型のポストが部品箱にありません。L字型でないとコネクタを刺す方向が縦になっておさまりが悪いのです。
代りにL字のピンヘッダがあったのでこれを基板にとりつけ、ここにRCサーボ等で使う3pinコネクタ(QIとかデュポンコネクタとか呼ぶやつ)で接続します。
但し逆刺しができてしまうのは要注意。

完成の図。

そして当初の目的であったドローンシミュレータ実行中。

参考のためマイコンに書いたファームウェアを載せておきます(例によってソースは試行錯誤の後が残ったままで汚いです)。コンパイルはMPLAB-IDEのバージョン8で行っていますが今となってはかなり古い環境だと思います。最新の環境でビルドできるかどうかは確かめていません。
また本来USB機器には固有のVID,PIDを書き込んでおく必要がありますがこのプログラムには適当な値を書いてあるのでそのまま使われる場合は自己責任でお願いします( 確率は低いですがもしVID,PIDがダブった機器を接続した場合に上手くつながらなくなる可能性あり)。
なおOpenStickLiteで使ったのと同じブートローダーから書き込む仕様でビルドしています。

HOI-Link:S-BUS→PC接続

PC上でドローンシミューレータを動かすとき、今までこんなコントローラーを使っていました。

10年くらい前、ムサシノ模型のモスキートモス号を作った時に練習用に買ったコントローラー

私レベルだとこれで問題ありません。しかし息子によると実物の送信機とは感覚が違うのでレースの練習はやりにくいとの事。
そこでトレーナーコネクタからPCに接続するインターフェースの購入も検討したのですが、その前に手元にあるものでなんとかできないか考えました。

まずトレーナーコネクタというのは送信機の裏についているこういう四角いコネクタ。ここからPWM信号が出ているらしいです。

右上の四角いコネクタがトレーナーポートです。

まずこのコネクタをどこで入手できるかというところから検討しなければなりません。またここから信号を取出せたとしてパルス幅をチャンネル数分カウントし、HIDデバイスとしてUSBに伝える処理も必要で何となく面倒です。

そこでRC受信機が出すS-BUS信号をマイコンで取り込んでUSBに伝えるのなら、OpenStickのファームウェアを少し改造して実現できそうです。しかもシリアル通信なのでパルス幅を数えるよりも精度が良い筈。但し受信機が一つ余分に必要なのと電波が出っぱなしになるのがちょっと気が引けますが、たぶんトレーナーコネクタから取り出す方式でも電波は出ているんではないですかね?(想像ですが)

こんな構造にしようと思います。

受信機はSBUSが出せれば何でもよいので、まずはこれで試してみます。

REDCON FT4X
ケースは外していました。

マイコンは秋月電子で買って放置していたPIC18C14K50搭載ボードです。このマイコンはOpenStickLiteでも採用しているので馴染みがあります。

そしてRAM領域の不足に悩まされましたが何とか動作し始めました。S-BUSは18チャンネル分のデータが含まれていますが私のT6EXで出せる6CHまでしか確認していません。あとで息子のT10Jで10chを試してみようと思います。


T6EXで実験中。ちょっと古いFASST方式ですが現役です。

実物のコントローラーだしケーブルをつなぐ必要もなく操作性は良いです。
何か他の事にも使えそうな気がします・・・今すぐ思いつきませんが・・ラジコン送信機でPCを操作する何か・・・
またPCの画面の前にカメラを置いてVTXで画像を飛ばし、ゴーグルで見ながらシミュレーターをやったらもっとリアルになるかも(かなりオタクだなぁ)。

現状はブレッドボードですが、この後ちゃんとした基板に載せ、ケースにも入れて完成させたいと思います。FRISKのケースあたりが良いかな?

どどーんはじめました。~その3~

今回のマルチコプターでS.BUSを初めて使ったので信号をArduinoで読み出してみました。
S.BUSとは何かという詳しい説明はコチラ→https://ja.wikipedia.org/wiki/S.BUS
要はラジコン受信機から昔ながらのサーボ信号を出すのではなくシリアル通信にする事で全チャンネルを1本の信号線で制御するという物です。

飛行機の場合はサーボの位置が分散しているので結局それぞれに配線する必要があり、あまりメリットを感じませんでした。しかしマルチコプターでは受信機の信号は全てフライトコントローラ基板に接続するのでこれが一本で済むのは大きなメリットになります。

S.BUS信号はシリアル通信ですが、UARTでよく使う仕様とは微妙に違うところがあり面倒になっています。例えば次のところ・・・

  • ボーレートが100Kbps。
    なぜか115.2Kbpsではなく100Kbpsです。妙なボーレートですがArduinoではSerialBegin()のとき100000と指定する事で対応できます。
  • 信号極性が逆転。
    Arduinoに入れる信号はインバータで反転してやる必要があります(もしかするとArduino側に反転機能があるのかもしれませんが見つけられませんでした)。

あと受信後のデータが11bit区切りなので並べ替えがややこしいです。

S.BUSプロトコルに詳細はこちらを参考にしました。→https://os.mbed.com/users/Digixx/notebook/futaba-s-bus-controlled-by-mbed/http://anarchy.hatenablog.com/entry/2014/12/07/181853

そして最低限の部分をスケッチに書きます。

int count;
long interval;
void setup() {
 Serial.begin(115200); // Terminal
 Serial1.begin(100000,SERIAL_8E2); // S-BUS
 count=0;
}

void loop() {
 int data[26];
 int val[19];
 int i;
 if (Serial1.available() > 0) {
 data[count]=Serial1.read();
 interval=millis();
 count++;
 }
 if ((interval+4 < millis()) && (0 < count) ) {
 count=0;

 val[0] =((data[1] & 0xff)<<0) + ((data[2] & 0x07)<<8);
 val[1] =((data[2] & 0xf8)>>3) + ((data[3] & 0x3f)<<5);
 val[2] =((data[3] & 0xc0)>>6) + ((data[4] & 0xff)<<2) + ((data[5] & 0x01)<<10);
 val[3] =((data[5] & 0xfe)>>1) + ((data[6] & 0x0f)<<7);
 val[4] =((data[6] & 0x0f)>>4) + ((data[7] & 0x7f)<<4);
 val[5] =((data[7] & 0x80)>>7) + ((data[8] & 0xff)<<1) + ((data[9] & 0x03) <<9);
 val[6] =((data[9] & 0x7c)>>2) + ((data[10] & 0x1f)<<6);
 val[7] =((data[10] & 0xe0)>>5) + ((data[11] & 0xff)<<3);

 val[8] =((data[12] & 0xff)<<0) + ((data[13] & 0x07)<<8);
 val[9] =((data[13] & 0xf8)>>3) + ((data[14] & 0x3f)<<5);
 val[10]=((data[14] & 0xc0)>>6) + ((data[15] & 0xff)<<2) + ((data[16] & 0x01)<<10);
 val[11]=((data[16] & 0xfe)>>1) + ((data[17] & 0x0f)<<7);
 val[12]=((data[17] & 0x0f)>>4) + ((data[18] & 0x7f)<<4);
 val[13]=((data[18] & 0x80)>>7) + ((data[19] & 0xff)<<1) + ((data[20] & 0x03) <<9);
 val[14]=((data[20] & 0x7c)>>2) + ((data[21] & 0x1f)<<6);
 val[15]=((data[21] & 0xe0)>>5) + ((data[22] & 0xff)<<3);
 val[16] = (data[23] & 0x1) ? 0x7ff : 0 ;
 val[17] = (data[23] & 0x2) ? 0x7ff : 0 ;
 val[18] = (data[23] & 0x8) ? 0x7ff : 0 ; // Failsafe

 for (i=0 ; i<19; i++ ) {
 Serial.print(val[i],DEC);
 Serial.print(F(" "));
 }
 Serial.print(F("\n"));
 }
}

S.BUSから取り込んだデータをUSB経由でシリアルモニタに表示したいので、シリアルポートが複数あるArduino MEGA2560で動かしてみます。

S.BUSモニタ

Arduino MEGA2560でS.BUSをモニター。
ブレッドボード上のICは信号極性反転のための74HC00。

 

こんな感じでデータが出てきました。
送信機が6CHなので7CH以降が正しいかどうかは確かめられていません。また19番目のデータはFailsafeが働いたときに1になるはずですが、これも確かめていません。

S.BUS monitor

モニター中。

各データが11bitt幅なので0~2047が表せるはずで、どうやらニュートラルが1024の様です。
ところでCleanflightにも受信データを表示する機能があります。しかし今回のモニターとCleanflightの値が一致しません。そこで何ポイントか対応を取ってみました。

 SBUSモニタ Cleanflight
       102         943
       697        1315
      1024        1520 ←ニュートラル
      1435        1776
      1681        1930

グラフにすると・・・

SBUS-CleanFlight

SBUSとCleanFlightの読値対応

恐らくCleanflightの表示値は昔ながらのPWMサーボ信号のパルス幅に換算した値をμS単位で表示しているのだと思います。例えばニュートラルはS.BUSの生データは1024ですがPWMだと1520μSといった感じ。
ということでS.BUSの生の値にざっと0.625掛けて879.5を足すとほぼCleanFlightの値になる様です。