フライトコントローラーを自作してみる。~その13~ Rev2基板動作確認

いよいよ電源を入れて動作を確認します。
まずは実験用電源からUSBコネクタへ、電流制限しながら5Vを印可・・・問題なし。

ではBOOTボタンを押しながらUSBケーブルでPCと接続・・・BetaflightConfiguratorを立ち上げておくとDFUモードに入る筈ですが反応ありません。
調べていくとR1とC7が入替わって取り付けていることに気づきました。
パターン上の近い場所にあったので間違った様です。リセットかかりっぱなしだしクロックも発振しないし、こりゃ動作しませんよね。

R1とC7が入替っていた。動く訳ないっす。

R1とC7を正しく取り付けなおすとDFUモードに入る様になったのでBetaflightのファームウェアを書き込んでリブート。すると今度はBOOTボタンを押していなくてもDFUモードに入る様になってしまいました。
原因はBOOT0端子のプルダウン抵抗R11のはんだ付け不良で、クリームハンダの乗りが少なかった様です。

ここまでで安定に動作モードに入る様になり、BetaflightConfiguratorからも認識されましたが、今度はジャイロ(加速度機能も)が認識されません。基板を傾けても画面上の機体は静止したままなのです。
ここは色々悩んだのですが結局はこれもジャイロの接続不良でMPU-6000を取り付け直したら正常動作となりました。

どうも今回ははんだ付け不良が多いなぁ。Rev1基板の時はもっとリードが細かいジャイロIC(MPU-6500)でも接続不良は無かったのに。。。
やっぱり固まったクリームハンダを溶かして使ったのが原因でしょうか?

まあナンダカンダで正常動作する様になりました。OSDも正常です。
また手持ち数が少ないので取り付けていなかったフラッシュメモリ(BlackBOX用)も取付けてログが取れる様にもなりました。

では5インチ機に積んでホバーリングテスト

特に問題なく飛びます。この後FPVでも問題ありませんでした。

という事でFC完成とします。
この後は処理能力の高いSTM32F405やSTM32F722を試そうと思ったのですが、昨今の半導体不足の為か入手できません。Aliexpressでは何度もキャンセル食らうし、RSやチップワンストップも入荷未定になっています。

STM32F411ならあと数個持っているのですが出来れば早いマイコンで試したいですよね。

フライトコントローラーを自作してみる。~その12~ Rev2基板組み立て

PCBGOGOからRev2基板が届きました。
が・・・ メタルマスクが裏面の分しか入っていません。発注内容を確かめると確かに裏面だけを注文していますね。
毎回なにかミスるなぁ。今回、基板自体は散々見直したんですけどね。

基板の裏/表。メタルマスクは裏面用のみ。

仕方ないのでメタルマスクの表面だけ再発注したところ、1週間せずに到着しました。早い!

メタルマスク表側

とにかく必要なものは揃ったので組立てに入ります。
机の上を片付けて適当な紙を敷きました。

こうやってマスクを被せた上からクリームハンダを塗るつもりなのですが・・・

クリームハンダがだいぶ固くなっています。
これって数か月で劣化してしまうらしいですね。一応冷蔵庫には入れていたのですが。

試しに無水エタノールを吹きかけて練り直してみると柔らかくなりました。
エタノールは何かと使うので、のどスプレーの空き容器に入れておくと便利です。

柔らかくなったのでメタルマスクの上から塗ってみます。


マスクを外すと・・・・なんか多くの箇所で短絡している。

柔らかくしすぎたかな。一旦クリームハンダをふき取ってやり直します。
少しアルコールを飛ばして適当な粘度になったところで塗りなおし(実際は何度かくりかえした)、大体いい感じになったと思うので部品を載せて・・・

リフローした結果がこれ。前回もそうでしたがマイコンのリードにブリッジができています。リフロー条件の問題か?
後から半田ゴテで修正します。

そして裏面も同様にリフローした後。こちらはブリッジは見られませんね。
なおU7と書いてあるところに部品が載ってませんが、これはBlackBOX用のFLASHメモリーを載せる場所で、部品の手持ちが少ないので一通り確認した後に手はんだで載せる予定です。

動作確認編へつづく・・・

フライトコントローラーを自作してみる。~その11~ Rev2基板

ブログを遡って読むと、ほぼ1年前からフライトコントローラー(以下FC)を作り始めていました。当初はFCを何度も壊すので自作して安く済まそうという魂胆でしたが、だんだんとFCを作る事自体が目的になっている気がします。

前回はRev1基板を使って3インチ機でFPVしたところまで書きました。その後5インチ機でも問題なく飛行できる事を確認しています(まあ3インチで飛べりゃ5インチでも飛べますよね)。

HOIHOIFC-F411 Rev1
ツギハギだらけです。パターンも何か無駄に遠回りしているところがあるし

という事で、Rev1基板の不具合修正や改良を加えたRev2基板を作っていきます。

まずはRev1基板の不具合点を振り返ると・・・

・USB信号のプラスとマイナスが入れ替わっていた。
・ブザー駆動トランジスタのピン配置を間違っていた。
・ブザー駆動トランジスタのベース100KΩという大きな抵抗値になっていた。
・DCDCコンバータ周りの配線が長すぎて電圧が揺れていた。
・取付穴位置を30mm角ジャストにしていた(一般的なサイズは30mmジャストではなく30.5mmでした)

当然ながらこれらは修正します。

BEC(DCDCコンバータ)について

バッテリー電圧から5Vを作り出すDCDCコンバーターICについて、前回はMonolithicPower社MP2359を使っていました。これは出力1.2A、最大入力24Vでしたが6セルバッテリーにすると耐圧が足りないのでMP1584に変更します。これだと出力3A、最大入力28Vです。
実際にはショットキーダイオードの3A品はサイズが大きいので2A品を使う事にして定格2A(瞬間的には3Aいける)BECです。
事前にMP1584を試した話はこの辺りに書きました。

左がMP2359,右がMP1584。
MP1584にするとだいぶ大きくなるなぁ。

DFUモード安定化

前回DFUモードに入りにくい(不安定)という問題があり、BOOT0に加えてBOOT1端子もLに落としたりしてみましたが今ひとつすっきりしていませんでした。
でも今回原因が分かった気がします。
STM32マイコンはBOOT1端子=H状態で起動するとブートローダーが立上るのですが、この時USARTやCAN等、幾つかのシリアルポートに信号が来ているかどうかをチェックし、その後USBを見に行きます。 この時USART端子に信号が入っているとその端子からプログラム書き込み信号を待つ様になってしまいます。
STM32F411の場合、USART1と3がブートローダー端子として動作します。そしてRev1基板ではUSART1にSBUS受信機を接続していました。
恐らくこれが邪魔してUSBを受け付ける状態まで進めなかったのだと思います。なのでRev2基板ではSBUS受信をUSART6に変更します。
そういえば市販FCもUSART6にSBUSを入るのが多いと思ったら恐らくこの理由なんだと思います。

ジャイロ

前回InvenSenseMPU6500を使っていました。
どうやらこれだと感度が高すぎて振動対策をしっかりする必要があるらしく、市販FCは大抵MPU6000を使っています。
という事でRev2もMPU6000に変更します。
またMPU6500はリードが0.4mmピッチに対しMPU6000は0.5mmピッチなので実装し易くなる事も期待しています。

左がMPU6500、右がMPU6000。
これも見比べると差が大きい。

マイコン本体

これまで最初に入手した評価基板に合わせてSTM32F411を使ってきたので今回もこのマイコンで進めます。
でもよりクロック周波数が高いマイコンにSTM32F405があり、ピン配置を調べたら1か所だけ変更すれば載せ替え出来そうなので後で試せる様に作っておきます。更にSTM32F722にも同じパッケージの製品があり、これもピン配置がほぼ同じなので使えるかもしれません(でも値段が高いんですよね)。

モーターの数

Rev1では基本の4本に加え予備として2本のモーター出力端子を持っていました。これでヘキサコプターを作れる筈なのです。
そしてRev2では更に2本追加し計8本にするので、その内オクタコプターを試してみたいと思います。

その他

発振子を小型の物に変えたり部品の配置を変更したり、結局かなりの変更量となりました。

最終的な回路図はこれ

そして基板パターン設計(これが一番大変だった)。

部品配置を変更したのでちょっと余裕ができた。
やっぱり基板設計は最初の部品配置が大事ですねー。

基板発注

基板はPCBGOGOに発注します。約500円の格安基板で作る場合、FusionPCBだとソルダーレジストの最小値が0.4mmなのでマイコンやジャイロのピン間隔(0.5mm)に対しては無理があるのです。
これに対しPCBGOGOは0.1mmなので多分大丈夫。(ただし送料が若干高い気がするし、また面付けすると高くなるので用途によって使い分けてます)

つづく・・・

RotorHazard~その2~

先日作ったRotorHazardを屋外の練習で使ってみました。

庭でTiny機を使って試した時の感触から、シールドケースにこれくらいの窓を開ければいいかなと思ったのですが・・・

思ったより感度が低く、結局は蓋を全開にしてちょうど良い程度です。

こんな感じでデータが取れます。
ほぼ問題なく取れているし取込みミスしたところは後から修正できます。

という事でいい感じに使えているのですが、PCとの間のWi-Fi回線が時々切れます。一度機体をぶつけてから発生している気もしますが単に電波状態の問題かもしません。
RoterHazard(のラズパイ)とPCの間は先日リサイクルショップにて770円で購入したWi-Fiルーターが中継しています。小型なのが気に入ってこれにしたのですがあまり強力そうには見えません。
同じ店にアンテナが3本くらい生えている強力そうなのが約900円であったのでそっちが良かったのかも。。。

家に帰って確認するとケースにペラが思いっきり当たった傷がついていましたがそれ以外に問題はなく、やはりWi-Fiルーターとの距離の問題だと思います。

次回やる時はRotorHazardとPCのなるべく中間付近にWi-Fiルーターを置いて距離を短くしてみます。

RotorHazard

NonsayaDroneWorksにRotorHazardの記事が載っていました。

私はドローンレースを主催する事はありませんが、練習の時にはラップタイムを計測したくて、この記事と同じ様にARマーカーを試したりしましたがやっぱり時々読み取りミスが発生するんですよね。また、かつてこんな記事を書いたこともありましたがその後まったく手を付けていません。
そこでこのRotorHazardなるラップタイマーを試してみようと思います。

RotorHazardはRX5808レシーバーが受信したFPV信号強度をArduinoを経由してRasberry Pi(以下ラズパイ)に渡します。ラスパイはWebサーバーとして動作し、PCのブラウザーで接続して操作できます。
RX5808とArduinoは受信するチャンネル数だけ必要なので最終的には3セット欲しいところですが、取り合えず手元にある1セット分で、またラズパイ3がおすすめらしいですが無いので手持ちのラスパイ2でやってみます。

最初RotorHazardのリリース版(RotorHazard-2.2.0)だとエラーが出たのでRotorHazard-2.3.0-beta2で実行できました。ライブラリバージョンとのからみっぽいです。
まあ何はともあれ上手く動作している様なのでAliexpressにRX5808モジュールを追加注文して2チャンネルにしてみました。
なおシールドしておかないと離れていても電波を受信してしまうのでお菓子の空き缶に収めています。

そして庭でTinyレース。庭だとどうしても計測ゲート以外を飛んでいる時の電波を拾いやすくなるのでコース設定に工夫が必要です。

こうなると野外に出て3インチや5インチの機体で試したくなります。その為にはちゃんとした基板とケースに収めたいと思います。
基板はRotorHazardのサイトにガーバーデータが掲載されているのでこのまま作ればよいと思ったのですが・・・

どうやら最小のビアサイズが小さすぎて約500円の激安仕様では作れず、見積もり価格が3000円を超えてしまいます。また基板の元データが無くてガーバーのみなので簡単には修正できないのです。

ならば新たに基板パターンを作ってみようと思った訳です。
日本では大抵3チャンネルで足りるしArduinoNANOを載せるのも勿体ないので直接ATmega328のフラットパッケージ版を載せたらコンパクトにできそうです。
また屋外のインターネットがつながらない場所で使うならリアルタイムクロックも搭載すると便利です(ラズパイ標準ではリアルタイムクロックを持っていないので電源を切ると時計がリセットされるのです)。

そして10枚500円仕様で作った基板がこれ。 。

マイコンの上を跨いで受信モジュールを実装する立体構造。

今回メタルマスクは注文せず、紙をレーザーカットしたマスクでハンダペーストを塗ってみました。ちょっと塗り辛いけど何とかなります。もしかすると塗り辛いのはハンダペーストが乾き気味だったせいかもしれません。
ただ何枚も塗るだけの耐久性はありません。

メタルだとそうでもないのに紙だと何だか汚く見える。

そしてリフロー

やっぱりリフロー炉作って良かったですねー。
表面実装できると何かと便利です。

リフローの結果。
一か所抵抗が立ち上がっています。これがマンハッタン現象ってやつですかね。
ハンダペーストの塗りが薄かったのかも。ここはコテで修正しました。

そしてブートローダー書込み×3回。

基板の裏に書き込み用パッドを設けているのです。

次にファームウェア書き込み×3回。

一旦ファームを書き込めば以降のアップグレードはラスパイからできる仕様になっています。(試してませんが)

ここでミスに気づきます。RX5808のピン並びが逆になっていて裏返しでしか実装できません。ま、とりあえず裏返しに実装します。

ラスパイに載せて動作確認OK!
ラスパイはメルカリで格安だったラズパイ3にアップグレードしています。

ボタン電池が載っているモジュールがリアルタイムクロック。

先日のMP1854ENモジュールを取り付けてリポから電源を取れるようにしました。

ケースに使う空き缶を探しましたがちょうど良いのがなかったので、2.5mm厚のMDFをレーザーで切って箱を作り、ダイソーの0.3mm厚アルミ板(裏面テープ付き)を貼り付けてシールドしました。

ケースのアルミシールドは回路のGNDに接続。

電源の入り口

XT60コネクタで給電

蓋を一部切って電波を取り入れます。ここの開き具合で感度を調整する予定。

ここの空け具合は色々調整してみます。

なおWi-Fiのアクセスポイントがない屋外で使うときは 、ラスパイとPCとの間をアドホックモードでつなごうと思いましたが設定変更が面倒です。
結局リサイクルショップに行ったらWi-Fiルーターが¥770だったのでこれを使う事にしました。

Wi-Fiルーター。中古とはいえ安くなったもんです。

これで完成かな。今度練習する時に使ってみようと思います。

ところでいまRotorHazardのページを見たらこんな基板がリリースされています。Arduinoの代わりにSTM32を使い、マイコン1個でRX5808モジュール8枚(ドミノ倒しみたいに縦に実装!)を制御するという構造。進化してます。
しかし8台同時にレースできるんですね、海外って。

SBUS→PWM変換

ドローンをいじっていると色々とパーツが増えてきます。SBUS出力の受信機もそうなのですが、ふと思い立って固定翼の飛行機に普通のサーボを積もうと思うとPWM出力の受信機がないのです。
そこでSBUSからPWMに変換する基板を作ってみました。

まずシリアルポートが複数あってデバッグし易いArduinoMEGAを引っ張り出してきます。SBUSの受信は何度もやっているのでソースをコピペし、沢山定義したサーボ出力に値を渡せばファームは出来上がりです。
その後ArduinoUNOに移しても問題なく動作しました。

そして基板化。
私が作る飛行機は大抵スチレンペーパー製の小型のものなので基板もなるべく小型がよいです。そこで最近はリフロー炉も稼働した事だし、中華格安メーカーに表面実装の基板を発注しました。マイコンには0.5mmピッチQFNパッケージ(リードがないやつ)のATmega328MUを使います。

という事で面付けして全部で120枚分の基板ができてきたのですが・・・・・

約500円の格安基板

シルクデータを含めるのを忘れていました。
更に0.5mmピッチのところソルダーレジストが載っていません。一瞬基板メーカーにヤラれたか?と思いましたが仕様を見るとレジスト幅は最小0.4mmという仕様でした。0.5mmピッチでリード幅もあり、どう考えてもレジスト幅は0.4mmには収まりませんよね。
そういえばフライトコントローラーを作った時、わざわざレジスト幅が細かいメーカーを選んだのでした(でもそのメーカーは面付けすると価格が上がるのです)。

マイコン周りのソルダーレジストが崩れている

とりあえず比較的上手くレジストが載っている基板を選んで(120枚もあるので中には上手くいっているのもあるのです)部品を実装しました。

そしてArduinoUNOを使ってブートローダーを書き、FT232RLを使ってファームウェアを書きます。

ブートローダー書き込み中。
奥に見えているフリスクケースがFT232RL

ピンヘッダを付けて完成!
12chまで出せます。6chまでは3pinのピンヘッダで、残り6chは信号だけ出しています。

例によって1か所ミスっておりジャンパーで補修しています。
(どこかわかります?)

息子が製作していた機体に積んで飛ばしてもらいました。特に問題なく飛んでいます。

高校生の息子が作った機体。
キット化して小遣いを稼ぐ野望を抱いている様です。

フライトコントローラーを自作してみる。~その10~ FPVで飛ばす。

前回、自作フライトコントローラーでホバーリングできるところまで確認したので次はFPVで飛ばしてみたいと思います。

が、その前に電源周りをもう少し強化しておきます。前回ノイズっぽかったのを転流ダイオードの配線を縮めて改善したのですが、まだスイッチングノイズが載っているのでその他の配線も縮めました。またGNDも配線追加により強化し、ノイズがかなりマシになりました。第二弾の基板ではこの辺りを盛り込む必要があります。

スイッチングレギュレータ周りの配線短縮&GND強化
だんだん汚くなってきました。

また機体発見ブザーを鳴らすトランジスタ、2SC2712のピン配を間違っていてブザーが鳴りませんでした。そこで無理やりトランジスタの向きを変えて取り付けています。
更にベース電流を決めるR14を100KΩにしていたのは大きすぎで5.1KΩに変更しました。試作基板はちゃんと5.1Kだったのになぜか回路図の段階で間違っていたのです。

機体発見ブザー周り。
トランジスタ斜め取付け。
R14はこの後変更しています(5.1Kの手持ちがなく6.8Kを使用)

以上の対策をした上でレース機に積むのですが、5インチ機にいきなり積むのも勇気がいるのでまずは3インチ機で試します。しかしフライトコントローラは35mm角なので一般的な3インチ機には積めません。そこで以前作ったウッドフレームに積んでみます。これだと35mm角の基板を載せるスペースがあるのです。


久々に登場、木製フレーム機。

この機体、いまはバラバラなので別の3インチ機からフレームとFC以外の部品を持ってきました。
ESCは25mm角なのでこの様な変換スペーサーをプリントして載せることにします。

35mm角⇔25mm角変換スペーサー

こんな感じで25mm角のESCの上に35mm角のFCが載っています。

全てが無理やり・・・

そしてホバーリング実験。
この時点ではBetaflightのバージョン3.5を書き込んでいて、前回の確認と同じで問題なくホバーリングできます。。
次にBetaflight4.2を書き込んでみます。前回の機体では4.2だと機体の揺れが収まらなかったのですが・・・この機体だとピタッと安定しています。

ならばFPVやっても大丈夫そうですねー。
という事で近くの原っぱにやってきました。

ゴーグルを付けて飛ばしてみると、何事もなく飛んでいきます!!
基板はツギハギだらけですが飛んでいる間は市販FCと特に違いは感じられないのです。
息子にも飛ばさせてみましたが特に違和感は無い様でした。

という事で色々見つかった不具合を修正すべく第二弾のパターン設計をしながらも次は5インチ機で試そうと思います。

フライトコントローラーを自作してみる。~その9~ 動作確認

前回基板に部品を実装したので、いよいよ動作させてみます。

まずはUSBコネクタから5Vを入れて電流が振り切れない事を確認しました・・・これは問題なし。
その後、BOOTボタンを押しながらPCとUSBケーブルで接続するとDFUモードに入る筈ですが・・・入りません。(T_T)

回路を見直していくと基本的な間違いに気づきました。USBのD+とD-が逆になっています!!そりゃダメだわ。


完全に見落としですねー。

とにかく修正します。
D+とD-には後からダンピング抵抗を入れられる様0Ωの抵抗を付けているのでこのパターンを使って配線をクロスさせます。

モーターのコイル巻き直しに使ったエナメル線で配線をクロスさせました。

改めてケーブルをつなぎなおすと、今度はDFUモードに入りました。
そこでBetaflightConfiguratorのUpdateFirmware画面から以前作ったファームを書き込みました。
ここまで何とか問題なし(いや問題はあったけどとりあえず修正済)。

そして改めてケーブルを挿し直してBetaflightConfiguratorで接続すると、ちゃんと認識されています。この状態で基板を手で動かすと傾きが表示されるので、ジャイロセンサーも正常に接続できている事になります。実はここのパターンが細かくて一番心配でしたが正常にリフローできた様です。

あとはフライトコントローラーとしての諸々の設定をしていきます。
ここまで正常。

次に受信機を接続し、送信機の操作が伝わっている事も問題なし。

ではESCを接続してモーターを回してみます。安定化電源から2セル分の7.4Vを供給してBetaflightConfiguratorモーターつまみを上げていくと・・・ちゃんと回ります。

ならばバッテリー(3セル)を接続して送信機から制御してみると・・・なぜかArmingできません。安定化電源に戻して色々試したところ、どうやら2セル電圧だとArmingできるのに3セル電圧だとダメみたいです。
となるとBEC回路ですかね。電源電圧によって違いがあるのはBEC回路より手前だけの筈・・・。

そこでBEC回路の出力をテスターであたるとちゃんと5Vになっています。
しかしオシロで見るとBECのスイッチングノイズが電源が高いと大きく載る様です(波形取り忘れた)。

原因はどうやら図のところ、スイッチング電源のダイオードのループが長すぎた様です。
2層基板に無理やり載せたので電源周りが厳しい気がしていたのですがやっぱり。 GNDの取り回しが遠回りな感じ。

そこでGND側を最短になる様に配線を追加しました。これでもOKだったのですが念のため5Vラインに47uFを追加しています。でもまだちょっとノイズっぽいけど先に進めていきます。

これで3セル電圧でもArmingできる様になったので例の「えー加減な機体」にペラを付け、Angleモードでホバーリングさせてみます。

すると斜めに振動しながら浮き上がりました。でもこれは想定内。試作回路で飛ばした時もファームがBetaflight4.2だと同様の現象が起こり、市販のFCでも同じでBetaflight3.xに下げると安定したのです。今回もファームのバージョンは4.2を書き込んでます。
4.2で揺れる原因は調べていませんが何か機体の特性みたいです。でもバージョンで変わるのでPIDかフィルターかそのあたりを調整すれば4.2でも納まりそうな気がします。

とりあえず今回はBetaflight3.xを書き込んでみます。
・・・すると、あれ?またDFUモードに入らないぞ?

どうもDFUに入る時と入らないときがあります。
DFUモードに入れる方法には二通りあって、BOOTボタンを押しながら電源を投入する方法とBetaflightConfiguratorの「ブートローダー/DFUを有効化」ボタンを押す方法があります。このどちらの方法も不安定で、ダメなときはずっとダメなのに入る時は繰り返してもうまく入るのです。成功率30%くらいでしょうか。

BOOTボタンを押すとSTM32F411のBoot0端子がHレベルになる筈で、実際オシロで見てもHになっていて、この部分は大丈夫だと思います。
ここでひとつ気になるのはBoot1端子です。 Boot1はPB2と共通の端子で、マニュアルによるとDFUモードに入れるためにはこれをLレベルにすることになっています。
しかしDIOと共有なんですよね。この端子を本当にLに落とす必要があるのか、回路図を書くとき疑問に思いました。そこでSTマイクロエレクトロニクス社の純正開発ボードSTM32F411Nucleoを調べたらこの端子はオープンで、これを使った試作機は問題なかったので、安心してフライトコントローラーもオープンにしていたのです。
しかし改めてマニュアルを読むとやはりLにしろと書いてあります。
という事で0.5mmピッチQFPのリードに無理やり電線をハンダ付けしてプルダウン抵抗をつないでみました。

これで成功率が上がりました。でもまだ時々ミスるのでまだ何か他に原因がありそうですが、やっぱりBoot1はLにするのが正しいのですかね。まあマニュアルに書いてあるから当然そうすべきで、最低でもパターンを引き出しておけば良かったんですが。でもNucleoはなんで大丈夫なんだろう?(端子オープンなのでたまたま上手くいっているだけなのかもしれません)

時々失敗する理由は判りませんが、とにかくBetaflight3.5のファーム書き込む事ができたので再びホバーリングにチャレンジ。
初飛行の動画です。

ちょっとふらついていて調整の余地が(私の操縦技術の問題も)ありますが一応ホバーリングしています。

あとOSDとBLACKBOXへのロギングも大丈夫でした。
ここまでの問題点をまとめると次の通りです。基板の第二弾を作る時(やるのか?)修正したいと思います。

  • USBのD+とD-の入替り。
  • 5Vスイッチングレギュレータ周りのGNDの取り回し
  • Boot1端子のプルダウン

という事で何とかホバーリングするところまでたどり着いたのでレーサー機に載せてどうなるかを試していきたいと思います。

フライトコントローラーを自作してみる。~その8~

いよいよフライトコントローラーの基板に部品を実装したいと思います。

まず実装前の基板はこれです。PCBgogoで製作して入着済。

約500円で10枚作れるPCBgogoの基板

そしてメタルマスクも購入済。こっちは基板よりも高くて約¥1000します。
画用紙をレーザーカットして代用できないかとも思いますが、初めてのリフローなので確実な方でやってみます。

実装前の準備として部品を紙の上に並べていきました。コンデンサの様に何も書いていない部品もあるので手をひっかけてバラケると大変なことになります。なので紙はテープで机に貼り付けています。

そして板の上に不要な基板の切れ端を貼り付けて固定治具にします。
まずは部品が少ない裏面(機体に積んだ時に下側にくる面)から実装する事にしました。

その上からメタルマスクを貼り付けて・・・

慎重に位置合わせ・・

マスクの上からクリームはんだを塗っていきます。

プラスチック板の切れ端でスリコミ スリコミ・・・

マスクを剥がすとこんな感じでクリームハンダが載っています。
まあ大丈夫そうです。

そして1個ずつピンセットで部品を置いていった後の写真。
この時には気づいていませんが左下のスイッチングレギュレーターICの位置がずれていて、リフロー後に気づく事になります。

ではいよいよオーブントースター(改)リフロー炉に投入。
不要基板に温度計のセンサーを貼り付けて横に置き、温度を見ながらやります。

スタート!
そして リフロー中・・・

よし終わった・・・

大体良いのですが、先程書いた通りレギュレーターICがずれていたのでポロッと落ちてしまいました。これは後ほど手ハンダで取り付けます。

またよく見るとOSD用ICのリードにブリッジがあります。なにか条件が良くなかったのでしょうね。クリームハンダが厚すぎたのかな?
これもはんだゴテで除去します。

ちょっとピンボケですがMAX7456のリード2か所にブリッジが見られます。

ハンダブリッジとレギュレータずれ以外、見た感じは良さそうです。

では表面側の実装に取り掛かります。
ところで表面にクリームハンダを塗る際、裏面には既に部品がついているので先程と同じ方法だと基板が浮いてしまいメタルマスクと基板が密着できない事に気づきました。
そこでMDFをレーザーで切り、部品のない四隅を支える治具を作成しました。このままだと基板厚の分MDFより高くなるので厚みが基板とほぼ同じ1.6mmの段ボールを見つけてきて基板の周りに置く事で全体が面一になりました。

1.6mm厚の段ボールに窓を開けてこの上に載せると全体が同じ高さになるのです。

あとは先程同様クリームハンダを塗って部品を載せました。

SHコネクタやタクトスイッチが溶けないか心配

リフローの時、実装済みの裏面から部品が落ちるとまずいのでアルミ箔で熱を遮ってみました(効果の程は判りませんがとりあえず大丈夫でした)。

リフロー完了

コネクタやスイッチが溶けないか心配していましたが無事みたいです。
でもやっぱりマイコンのリードにブリッジがありますね。何がいけないんだろう。
なお表面の過熱により裏面のブリッジが直っていないかと期待しましたが変化ありませんでした。 まとめてはんだゴテで除去します。

リフロー×ブリッジでググると、クリームハンダがそもそもブリッジしている場合は当然として、高温時間が長い場合も狭い隙間にハンダを吸い上げてしまう様です。毛細管現象みたいなものですかね。
今回のはリードの少し上でブリッジしているので高温長すぎの方かもしれません。

何はともあれ、基板に部品がつきました。
次は動作を確認していきたいと思います。

フライトコントローラーを自作してみる。~その7~ リフロー炉

細々と続けているフライトコントローラー自作の続きです。
部品が一通り揃ったのでリフローの準備を始めます。

フライトコントローラーはすべて表面実装部品を使うので手ハンダでは難しく、リフローで実装したいのです。
また35mm角の基板に部品を載せていくと両面実装になるので、ホットプレートを使ったリフローでは裏側実装のとき密着できない懸念があり、ここはやはりリフロー炉を使う必要がありそうです。

という事でオーブントースターを改造してリフロー炉を作る事にします。
内容的にはスイッチサイエンスさんのこのキットを真似して作ります。
(キットはずっと品切れなのでバラで部品を集めます)

まずオーブントースターを入手。リサイクルショップで適当なものを¥1800で買ってきました。TIGERのKAM-A130という機種で1300Wの品です。どれだけのパワーがいるか不明なので、足りないとどうしようもないので強めの機種を選びました。

ヒーターは3本備えていますが、この内2本は並列につながっています。常温で抵抗値を測ったところ並列状態の2本と単独の1本が同程度の値になっていて、2系統の配線が半分ずつのパワーを受け持つ様に制御しています。

前面にはタイマーと温度設定つまみがあります。タイマーはゼンマイ式で0まで戻ると「チン」となるアレです。温度設定つまみはバイメタル式サーモスタットらしき機構につながっています。
タイマーの方はそのまま安全タイマー(なにかトラブルがあって通電を続けても時間が来たら止まる)として使いたかったのですが、カバーが金属のツメを折り曲げて止めてあり、一度外すと元に戻せなくなりそうなので諦めました。
結局ヒーターに接続する電線だけを引き出して利用することにします。

回路はこれ。
オリジナルのスイッチサイエンスのキットはATMega328Pを3.3Vで動作させていて、これはたぶん温度センサーのMAX31855が3.3V動作の為だと思います。でも今回はAdafluitのMAX31855モジュール基板(秋月電子で入手)を使うので内部に5V→3.3Vレギュレータを持っているし、更にSSRは入力が4V以上となっているので5V系のArduino UNOの方が都合が良いのです。

温度を測定する熱電対は秋月電子で買ったステンレス管に入ったタイプでやってみます。
オーブンの内部に突っ込むので電線がピラピラしているよりもしっかりした棒状のセンサーを突っ込む方が保持しやすいと思ったのです(が、これは失敗だった事に後で気づきます)。

では改造です。
オーブントースターの筐体に穴をあけて電線を引き出します。穴の縁が鉄板そのままだと電線を傷つけそうなのでハトメを打ちました。 でもハトメの穴も案外ギザギザしているんですね。これだと効果が薄いので結局ハトメは外して他の方法を探します。

そして見つけたのがこれ「ダイソーのシリコーンマット」。230度までOKとなっています。これを適当に切り電線の周りに巻いて穴にツッコミました。


これで電線を傷つける心配はないと思います。

制御回路はまだバラックです。

ファームをGithabから取ってきてリフロー条件もそのままでArduinoに書き込みました。
そしてとりあえず何か焼いてみます。以前基板を発注したら間違って届いたものを使い、適当なランドにクリームはんだを塗って適当なチップ抵抗を載せます。


まずはソースコードに最初から書かれていた温度プロファイルそのままでやってみます。これは130℃まで上がるとで15秒待ち、その後230℃まで上がると目標を225℃に下げ、更に100秒経過するとすべてのヒーターを止めるという動作です。

ではスタートスイッチをポチッと。
最初の段階は1系統のみヒーターONで130℃を目指して温まっていきます。 そして130℃で一旦ヒーターが切れますがそれでも暫く温度が上昇し140℃まで上がりました。そして15秒のタイムアップ後2系統共ヒーターONとなり230℃を目指して上昇していきます。230℃に達するとヒーターOFFになり目標温度が225℃に下がるのですがまだまだ温度が上昇し240℃を超えてしまいました。基板からは時々プチッという音が聞こえてきます。その後225℃まで下がるか下がらないかの間に100秒の待ち時間が過ぎて一通りの処理が終了しました。

扉を開けると・・・

何か色が濃い・・・

結果・・・基板が黒くなっていて過熱しすぎっぽいですね。

左はリフロー前, 右がリフロー後。
過熱により黒くなりました。

ならば温度センサーがちゃんと温度を取れているのか、熱電対温度計と並べてヒートガンで過熱してみます。

結果、温度はまあ一致するのですが、ステンレス管に入った方は温度が伝わるのに時間がかかり、遅れて追いつく様な感じになります。
ステンレス管の熱電対を選んだのは失敗ですねー。さっき温度読みが240まで上がりましたがこれは遅れた表示なので実際はもっと上がっていたと想像できます。
まあちょっと予想はしていて、電線直接の熱電対が何本か手持ちが あるのでステンレス管がダメならこっちに変えようと考えていました。

電線直接の熱電対だと固定しずらいのでどうするかですが・・・3Dプリンタで使ったテフロンパイプがまだあった筈。これを適当に切ってその中に熱電対を通し庫内まで貫通させてみます。

次は制御回路と温度計、二つの熱電対を基板のほぼ同じ位置に貼り付けて動作させてみます。

こうすると制御回路と温度計の表示がほぼ同じで動作しているので測定自体は大丈夫みたいです。しかし通電を止めてから10℃くらい上がるのは変わりません。ヒーターからセンサーまで熱が伝わるのに時間がかかるのでしょう。

このファームは設定値に温度が達したら通電を切り、設定値よりも下がったら通電するというシンプル制御です。そこでPIDを追加してみたりと迷走したのですが結局止めました。最大温度に達する直前に過熱をゆるめるので温度の跳ね上がりはなくなりますが、最大温度付近にいる時間が長くなってしまうのが気に入らなくなったのです。

で、結局元通りのファームを使って温度プロファイルだけ調整する事に落ち着きました。

なお庫内でピロピロしない様、こんな感じでセンサーを固定しようと思います。この状態で基板に貼り付けた温度計と比べると、温度計の方が最大10℃くらい高い温度となるのでその分と跳ね上がり分を差し引いた上限値にします。

こんな感じで横からセンサーが出っ張ります。

更に何度か試してほぼ目途がたったので、次はいよいよフライトコントローラー基板に部品を実装しようと思います。