Tag Archives: ドローンレース

ESCを作ってみる~その3~

ESC自作実験の続きです。

回路

何はともあれ目標とする回路図を書いてみました。動作させてみてマズいところは修正していきます。

マイコンのマニュアルはSiLabsの公式ページからダウンロードしました。
 https://www.silabs.com/documents/public/reference-manuals/efm8bb2-rm.pdf
ドライバのマニュアルは良く分からないところからダウンロードしました。
 https://static.qingshow.net/fortiortech/file/1597746029372.pdf

回路をざっと説明すると次の通りです。

  • 制御用マイコン
    SiLabsのEFM8BB21F16G。この中のBLHeli_Sファームウェアが全体を制御します。
  • 出力パワーMOS-FET
    モーターのコイルに電流を流す為のNch MOS-FETで、手持ちの2SK2232を使用します。
    全てはこの6個のMOS-FETを狙い通りにON/OFFする事がESCの目的となります。
  • FET駆動用ゲートドライバ
    FORTIORのFD6288Q。パワーMOSのゲート駆動用ICです。ゲート駆動するのもそれなりのパワーがいるので電圧及び電流容量アップ、またH/L同時ONの防止等を行います。
  • ブートストラップ回路
    NchのパワーMOSを駆動するにはソース端子よりも10V程度高い電圧が必要です。H側FETがONしている時、ソースとドレインはほぼ同電位なので、結局電源よりも高い電圧が必要です。
    そこでL出力期間にコンデンサにチャージしておき、H出力期間に電源以上の電圧を取り出します。
  • 電気角検出回路
    ブラシレスモーターをセンサー(ホール素子等)を使わずに回すには、現在の回転角を検出する必要があります。このためコイル電圧を抵抗分割してマイコン内臓のコンパレーターで検出します。

ゲートドライバICにはパワーMOSと同じ電源電圧を入れているので2~4セル程度の電圧なら回せると思いますが、2SK2232のゲート・ソース間電圧が最大20Vなので6セルで回すとFETが壊れるかもしれません。
なお部品摘出元の市販ESCでは12Vのレギュレータを挟んでゲートドライバに入れてありました。

製作

で、作ったのがこれ。
パワーMOSは手元にあった2SK2232を6個使用しています。
マイコンとゲートドライバは先日作った基板に載せて、それをブレッドボードに挿しています。
モーターは軸が曲がったジャンク品を接続。
黄色いUSBケーブルを挿しているのはHOIHOI-FC Rev1。既にRev2があるので実機には載せないけど諸々の実験には便利に使っています(なにせ内部の回路が全て判っているので)。ここからDshot信号を発生させるのです。

動作

配線をミスってたりQFNのハンダ付けが上手くいってなかったりしましたが、何とか動作しました。
動作中の動画・・・

Bluejayを入れてみる

マイコンにSiLabs EFM8BB2を使ったESCではBluejayというファームウェアをインストールできます。(Bluejayの存在は最近知ったのですけど・・・)
BluejayはRPMtelemtryが使える等の機能強化がなされているのです。
インストールするにはブラウザから下記のサイトを開くとコンフィグレータが立上がります。
https://esc-configurator.com/
(Chromeで実行しました。ほかのブラウザは試していません。
スタンドアロン版もある様ですがメンテしないので非推奨と書かれていました。ドローンの場合ネットが繋がらない環境で使う事も多いので、その場合どうなんでしょうね?)

実行結果が下の画面です。BLHeliSuite同様、FC経由でConnectしてファームを書き換えました。
更にメロディーエディター機能もあるのでスタートアップのビープ音も変更してみました。

Bluejayに書換後、モーターが回らないので焦りましたが、原因はFCのプロトコル設定がPWMになっていました。BluejayはPWMのサポートは無くDshot専用なんですね。

Dshotに変更し、更にRPMtelemetryをONにした動画。BetaflightConfiguratorに回転数が表示されています。

という事で・・・

バラック状態ですがESCを作れる事が分かってきました。
この先ですが、最終的にはFCとESCを纏めて巷で言うAIO(All In One)基板を作るという野望があります。でもこれはかなり大変そうですね。Ki-cad上で基板設計は出来たとしてもチップ抵抗もこれまでより細かいサイズにする必要があるでしょうし、部品点数も多いので手作業での実装はたぶん無理。また基板も4層以上になるでしょうから値段も上がるし・・・
まずは4in1ESCを作るところからかな?

つづく・・・

ESCを作ってみる~その2~

大晦日に基板が到着したので作業を続行します。

前回の投稿にジャンクESCからマイコン(EFM8BB21F16G)とドライバIC(FD6288Q)を摘出した事を書きました。これらのICを基板に載せ、ブレッドボード上であれこれ実験する予定です。

基板に搭載

今回はメタルマスクを作らなかったのでコピー用紙をレーザーカットしてクリームハンダを塗ります。

部品を載せて・・・

リフローしました。

チップ内蔵クロックを使用するので発振子も不要ですし、この後ピンヘッダと電源のコンデンサだけを取り付けました。

マイコンの動作確認

ではEFM8BB2マイコンのGNDとP05端子にフライトコントローラー(以下FC)を接続し、3.3Vの電源を入れます。
この状態でBLHeliSuiteを起動すると設定内容を読出せたので、マイコンは生きていますね(ジャンクから取出したので一応確認)。

次はマイコンに何か書き込んでみたいのですが、公式の書込み機(Toolstick)は持っていません。
調べたところEFM8BBxマイコンにプログラムを書き込むにはざっと以下の方法がある様です。

  • C2インターフェース経由での書込み。
    公式の書き込み機(Toolstick)はこのC2インターフェースに接続する様です。
  • ファクトリーブートローダー
    新品状態ではこのブートローダーが書かれていてUARTから書ける様ですが、今回ESCから摘出したマイコンには下記のBLHeliブートローダーが上書きされているので、この方法は使えません。
  • BLHeliブートローダー
    ESCを購入した時点でファームウェアと共に書かれているブートローダーで、FCからの信号端子をそのまま使ってファームを書き換える事ができます。
    普段FC経由でファームをアップデートする時はこのブートローダーが動作しています。

という事でまずはBLHeliブートローダーからのファーム書換えをやってみます。
と言っても普段やっている通りで、FCを接続すると問題なく書換えができました。

しかし将来的に新品マイコンを買ってきた場合にはこの方法は使えないのでC2インターフェース経由でも読書き可能な事を確認したいですね。公式のマニュアルによると開発ツールのSimplicityStudioから書込み機(Toolstick)を使って接続する様ですが、上記の通りToolstickは持っていません。

そこで見つけたのはPCでBLHeliSuiteを立上げておいてArduino経由でC2インターフェースに接続する方法。 この方法ならBLHeliのファームを壊して文鎮化した場合でも書き直せる様です。

BLHeliSuiteからArduino経由C2-I/Fでファームを書いてみる。

ざっと流れを言うと、BLHeliSuiteを起動し、まずArduinoにファームを書込むことでArduinoがC2インターフェースでの書込み機に変身します。(この時ArduinoIDE等は使わず、BLHeliSuiteから直接書くことができます。)
その後Arduinoとマイコンを接続してマイコンにファームを書込む流れとなります。

ではまずPC上でBLHeliSuiteを実行し、「Make interfaces」タブをクリックすると下の様な画面になりました。

次にPCのUSBポートにArduino(今回NANOを使用)を接続しておき、画面右のボード選択でArduinoNANOを選択、画面最下部でCOMポート番号を選んだら右下の「Arduino 4way-interface」をクリックします。

ここで3つのファームから1つを選ぶ画面が現れたので4wArduinoNano_16_PB3PB4v20002.hexを選択しました。
(ここでPB3PB4とかPD3PD2というのはArduinoのどの端子をC2インターフェースに接続するかの違いだと思います。MULTIというのは良く分かりませんが複数のESCを接続できるんでしょうね?)

あとは「開く」とか「OK」(だったかな?)とかを適当に押すとArduinoにファームが書き込まれます。
これでArduinoが書込み機となりました。

次にArduinoとEFM8BB2マイコンの間を接続して電源を入れます。接続は下の3本です。

 <Arduino>     <EFM8BB2>
 PB3又はD11 ⇔  C2CK
 PB4又はD12 ⇔  C2D
 GND        ⇔  GND

BLHelisuiteのメニュー「Select ATMEL/SiLABS Interface」から、B SiLABS C2(4way-if)を選択します。

あとは普段通り。「Connect」→「Flash BLHeli」とボタンを押してファームを選択すると書込みができました。

Lチカプログラムを書いてみる。

上記の方法で当面の目的は叶えられました。でも折角なので前回ビルドしたLチカサンプルプログラムを書込んでみようと思います・・・が、BLHelisuiteでLチカプログラムを書こうとするとエラーが出てきました。「変なものを書いているよ」という警告ですがキャンセルボタンしか無いです。
どうやらなんでも書き込めるわけではない様ですね。

そこで更に調べていくとow-Silprogというのを発見しました。こちらもBLHelisuiteと同じ様にArduino経由で読み書きするツールです(どうやらBLHelisuiteのC2接続機能のベースになったツールっぽい)。
こちらはAvrBurnToor_V101.exeを使ってArduinoにファームを書込みますが、そこからC2インターフェースに接続するので基本的にやっている事は同じです(但しArduinoに書いたファームはBLHelisuiteとは互換性はない様でした)。
このサイトの説明によるとWindows上で動くGUIツールを使った読み書きもできる様ですが、このツールの存在場所を見つけられませんでした。が、コマンドラインから使う為の命令一覧が載っているので、こちらは実行できました。
この方法でマイコンFLASH内のアドレスを指定して内容を読出す事ができます。実はジャンクから摘出したマイコンではファクトリーブートローダーは上書きされていると先ほど書いたのはこれで読んだ結果からです。

で、bwというコマンドではインテルHEX形式を指定して書込めるという事なので、下の様に1行ずつ書き込んでいきました(Lチカプログラムは10行もないのでコピペで実施した)。

これでLチカも動作していますね。
ならばファクトリーブートローダーを書き戻す事も出来そうですがキリが無いので一旦止めて、本来の目的であるESCを動かす事を先に進めたいと思います。

つづく・・・

ESCを作ってみる~その1~

前からやってみたかったESCの製作をしてみました。
以前FCを作ったので、加えてESCも作れるとドローンの主要パーツが揃う事になります。(あ、モーターは別ですね)

※略語の確認
 FC :フライトコントローラー
     マイコン基板にセンサーが載ったやつ。ドローンを制御する。
 ESC:エレクトリック・スピード・コントローラー
     ブラシレスモーターを回すドライバ。

ドローン系ESCの種類

今回もESCのファームウェアを1から作るような根性はないのでオープンソースの優秀なファームを使う予定です。
レース系ドローンでよく使われるESC用ファームにはBLHeliというのがあり、更にBLHeli内の分類、その他最近登場したファームも含めて整理してみました。

  • BLHeli
    AtmelやSiLabsのマイコンが対象ですがちょっと古いタイプでレースではあまり使われません。
  • BLHeli_S
    マニュアルによるとBLHeliのnext generationという事です。_Sが何を意味するのかは判りません。SiLabs製マイコンのみ対象でAtmelは対象外みたいですね。
  • BLHeli_32
    STM32マイコンを使った32bit版です。
    RPM telemetry(回転数をFCに送信する機能)がありFC側でRPMフィルターという高度な処理ができるのですが、上の二つと違ってソースが公開されてないっぽいです。
  • bluejay
    これ最近知ったのですがBLHeli_Sの派生版で、SiLabsのマイコンが対象ですがRPM telemetryが使えます。
  • AM32
    これも先ほど知ったのですがSTM32を使ったオープンソースのファームウェアらしいです。

今回製作するESCはBLHeli_Sを対象にします。そして上手くいけば後にbluejayも試そうと思っています。

SiLabs製マイコンについて

という事でSiLabsのマイコンを使う事になりますが、このメーカーって馴染みが無いので調べてみました。
BLHeli_SでサポートしているのはEFM8BBxという8bitマイコンで、このCPUコアはインテル8051の命令セットとコンパチです。8051って随分昔に使った事があり懐かしいですね。たしか8080に周辺回路をつけてワンチップマイコン化した様なやつだったと思います。でもEFM8BBxは処理速度が大幅に向上しているそうです。
ところでBLHeli_Sのソースはアセンブラで書かれているんですね。80のアセンブラなんてすっかり忘れたなー。

BLHeli_Sのビルド

EFM8BBxの開発環境はSimplicity StudioというのがSiLabsのサイトからダウンロードできます。
そこで絶対必要というわけではない(ビルド済HEXファイルをダウンロードすればよいので)ですがBLHeli_Sをビルドしてみたいと思います。
Simplicity StudioにはWindows上で動くGUIな開発環境が付属していますがBLHeli_Sのビルドはコマンドラインからバッチファイルを実行します。
で、実行してみたところC8051開発ツールが評価版なのでサイズの制限でビルドできないっぽいメッセージが出ました。えー、お金いるの? どうやら内部で使っているKeliというコンパイラ/アセンブラのライセンスをARMから買うっぽいですね。
まぁBLHeli_Sのビルドは絶対ではないので一旦置いといて付属のサンプルからLチカプログラムを実行したところ、やはり同じメッセージが出て止まりました。
でもSimplicity Studioを使うならKeliのラインセンスは無料でもらえっぽいメッセージが出ているので表示に従ってラインセンスをもらうとビルドできてしまいました。
という事はBLHeli_Sもビルドできる様になったのかな・・・もう一度バッチを実行してみると確かにこちらも最後まで進み、無事HEXファイルが出来ていました。

ハードウェアの準備

何はともあれ実行してみる為のハードウェアが必要です。
EFM8BBxの評価ボードを調べると市販はされていますが5000円以上します。でもよく考えるとこのマイコンは沢山持っていますよね。
こんな感じで・・・

ジャンクのESC群。ここから摘出すればよいのです。ついでにパワーMOS FETをドライブするドライバIC(FORTIOR FD6288Q)も摘出できます。
なおドライバICのFD6288QはH側にN-MOSを使う場合に必要な電源電圧より数V高い電圧を発生してくれたり、H側とL側が同時にONして貫通電流でFETを壊す事故を回避してくれます。

という事で摘出しました。
・マイコン:EFM8BB21F16G x3個
・ドライバ:FD6288Q x3個

マイコンとドライバ、どちらも0.5mmピッチのQFNパッケージなのでそのままでは配線し辛く、引き出し基板が必要です。Ki-Cadで描いてFutionPCBに発注しました(送料込みで$16.4)。

引き出し基板が届いたら色々試していきたいと思います。

つづく・・・

HOILog・・無人航空機の飛行日誌を自動化

最近M5Stackにハマっていました。
M5Stackというのはまあ簡単に言うとESP32マイコンにLCDディスプレイやバッテリーを含んだ電源管理回路などをつけて一式をケースに入れたものです。
私が購入したのはCore2という機種で外観はこんな感じ・・・

M5Stackは数年前から出ていて気にはなっていたのですが、値段がちょっとお高めだったりして手を付けていませんでした。で、今更ながら購入してみたら結構便利なんですよね。 特に電源管理回路とかイチから作るとそれだけで何かにハマりそうですが、これなら最初から入っています。

HOILog

という事で何を作っていたかというと「無人航空機の飛行日誌を自動でとるシカケ」です。命名:HOILog。
M5Stack Core2を選んだのは内部に時計(RTC)を持っているので時刻を記録し易いのです。

構造は ざっと下の通り・・・

RC受信機が信号を受けるとSBUSやCRSFプロトコルでM5Stackに伝えます。
(SBUSはフタバ系、CRSFはELRS等で使われるプロトコルです。両方対応しています。)
M5Stack側では信号が来たら飛行開始と判断し、マイクロSDカードに時刻を記録します。そして信号が途絶えたら飛行終了ということでまた記録します。

更にM5StackにはWiFi接続機能があります。これを利用してWiFiが利用できる環境であればASAKICHI先生作の飛行日誌システム( 詳細 はこちら) にもアップロードできるので、Googoleドライブ上のスプレッドシートに記録が残っていきます。

動作しているところはこんな感じ→Twitterに上げた動画

ハードウェア

M5Stack Core2の裏にピンソケットがあります。新品の状態ではここにフタを兼ねた気圧センサー基板がついていますが、今回は不要なので取り外して+5V電源、GND、UART2のRX/TXを引き出し、RC受信機に接続します。
ELRS受信器には入力(RX)信号があり、現在は使っていませんが将来何かに使うかもしれないので繋いでおきます。SBUS受信機の場合は入力信号がないのでM5StackのG14(UART2-TX)端子はオープンにしておきます。

ブレッドボード上に組んだセット(回路図にはないですが分かりやすい様に電源にLEDをつけています)。

ソフトウェア

M5StackはULFlow、ArduinoIDE、Micropython等の開発環境が選択できます。私はこの中から一番なじみのあるArduinoIDEを使用しました。
ところがやり始めて気づいたんですけど、コンパイルが結構遅いんです。ググってみると皆さん同じ問題により、PlatformIOに乗り換えられている様です。PlatformIOとはVisualStudioCode(以後VSCode) に入れるプラグインで、たぶん一言で言い表すと各種マイコンに対応した開発環境だと思います。
確かにPlatformIOでビルドするとかなり早くなり快適です。またベースがVSCodeなので入力補完があったり、キーバインディングをEmacs風に変更したりできて便利です。(余談ですがEmacs風キーバインディングにしたとき、VSCodeの仕様によりEscキーを使用できず、代りにAltキーを使う事になるのが弱点です)。

ところがPlatformIOで作ったスケッチが大体安定した動作になった頃、このブログで公開しようかなーと思い、その前に一旦ArduinoIDEに戻してビルドしたところ何だかうまく動作しません。(M5Core2ライブラリはどちらも同じバージョン(0.1.5)なのですが、もっと奥の方のライブラリのバージョン違いが原因かもしれません。)

とりあえずハマったのは下記の2点。
・タイマーの一旦停止後再起動する場合の動作の違い。
 timerStop(timerxx)で停止した後に再起動するとき、 PlatformIOはtimerRestart(timerxx) で再起動できていたのがArduinoIDEだと止まったまま。
 →対策:timerAlarmDisable(timerXX)で止めて timerAlarmEnable(timerXX) で復帰させる。ただし復帰直後のカウントアップが嫌だったので timerAlarmEnable(timerXX) 直前にtimerRestart(timerxx) も実行した。

・HTTPにPOSTした後同じオブジェクトでGETできない問題。
 Googleドライブへアップロードするとリダイレクト指定が返ってきます。このため一旦POSTでアクセスした後、今度はGETでアクセスするという2段階のアクセスが必要となります。そこでPlatformIO上では、HTTPClient http;で作ったオブジェクトを使いまわして接続していました。しかしArduinoIDEだとエラー(エラーコード400が返る)となりました。
色々試したところ、どうやらArduinoIDE上では GET→GETなら できますがPOST→GETはダメでした。
 → 対策: HTTPClient http2; の様にもう一つオブジェクトを宣言し、POSTはhttpオブジェクト、GETはhttp2オブジェクトで使い分けた。

使い方~セットアップ編~

  1. ArduinoIDEとM5Stack Core2の開発環境を準備する。私はこちらのページを参考にしました。
  2. この投稿の一番下からM5Stack Core2用のスケッチをダウンロードして解凍する。
  3. PCとM5Stack Core2の間をUSBケーブルで接続する。
  4. 「2.」で解凍したフォルダ内のHOILog.inoをダブルクリックするとArduinoIDEが開く。
  5. ArduinoIDEのツールメニュー→ボード名を”M5Stack-Core2″、シリアルポートを該当するポート名(不明な場合はWindowsであればデバイスマネージャーで調べる)に設定する。
  6. 書込みボタンを押して書き込む(若干時間が掛かります)。書き込みが完了したら電源ボタンを長押し(約6秒)して一旦電源を切る。
  7. 上の「ハードウェア」に書いた様にM5StackとRC受信機を接続する。
  8. 設定ファイル”hoilogini.txt”を作成して マイクロSDカードのトップディレクトリに置く。※SDカードの使用は必須です。
  9. 電源ボタンを押して起動!!

設定ファイルについて

SDカードのトップディレクトリに”hoihoiini.txt”の名前で作成します。
内容は1行に1パラメータを設定。1行は256バイトまで。行先頭にディレクティブ、その後1文字以上の空白を置いて設定値を書きます。#記号より右側はコメントです。

設定ファイルの例・・・

# HOILog 設定ファイル 

LOGFILE /hoilog.txt # File name
SCREEN 60 # Screen save time.(Seconds)
RCTYPE SBUS # SBUS or CRSF
RCJUDGE RSSI # RSSI or RCSIGNAL
RCRSSICH 16 # Channel number
RCRSSITH 1000 # Threshold value
RCCONTTIME 3 # Signal continue time
BAUDRATE 100000 # SBUS:100000 CRSF:420000
WIFITIMEOUT 20
SSID XXXXXXXX
PSWD XXXXXXXXX
LOGURL https://script.google.com/macros/s/XXXXX/exec
LOC1 ASO
LOC2 AMAKUSA
LOC3 KOSHI
MODEL1 Tyro99
MODEL2 Switch
MODEL3 Five33

各ディレクティブの説明:

LOGFILE:SDカードに残すログファイルの名前です。
SCREEN:指定の秒数イベントがないと画面を暗くします。ボタンを押したりRC信号が変化すると表示を再開します。値が0の場合は常に表示です。
RCTYPE:RC受信機の信号フォーマットがSBUSかCRSFかの指定です。
RCJUDGE:飛行中の判定をRC信号の有無で判定するか、RSSIで判定するかの指定です。受信機によっては電波が途絶えても最後の状態を維持するので単に信号が途絶えたかどうかでは判別できません。その場合でもRSSI(信号強度)がどこかのチャンネルに出ていればこれを基に判別可能です。
RSSICH:RSSI によって飛行中である事を判定をする場合、RCチャンネルの何番がRSSIを示すかを指定します。
RSSITH:RSSI によって飛行中である事を判定をする場合、 RSSICHで示すRCチャンネルの値が幾つ以上なら信号ありとするかを指定します。CRSFの信号範囲が172~1811、SBUSも大体その程度なので1000あたりを入れておけば大体OKだと思います。
RCCONTTIME:瞬間的な信号の切断やノイズによる入感を除去するため、
(立上り/下り共) 信号が何秒間連続で続いたら変化したと判断するかを指定します。
BAUDRATE:RC信号のボーレートを指定します。SBUSは100000固定。CRSFは420000がよく使われる値です(115200も使われる様ですが手元に確認する環境がなく、動作を確認していません)。
WIFITIMEOUT:WiFi接続時、何秒以内に接続できなかったらあきらめるかを指定します。
SSID:WiFi接続のSSIDを指定します。
PSWD:WiFi接続のパスワードを指定します。
LOGURL:Googleドライブにアップロードする為のGoogleApplicationScriptへのURLです。こちらのASAKICHI先生の動画の8分20秒頃に説明があるURLです。
LOC1~5:飛行場所を5つまで設定できます。M5Stack上のメニューでこの中から一つを選択してログに残せます。電源投入直後はLOC1が選択されています。MODEL1~5:機体名を5つまで設定できます。 M5Stack上のメニューでこの中から一つを選択してログに残せます。 電源投入直後はMODEL1が選択されています。

※LOCxやMODELxの値に日本語等の2バイト文字を入れるとどうなるかは試していません。

使い方~操作編~

電源を入れるとまずWiFiに接続した後、下の基本画面になります。
WiFiに接続できなかった場合はSDカードへの記録のみ行い、Googleドライブへのアップロードはしません。
この状態でRC電波を受けるとRCCONTTIMEに設定した値の秒数信号が続く事を確認後、SDカード、およびGoogleドライブのログに記録を残します。
Googleドライブへ記録する間、飛行状態表示部に「START UPLOAD」又は「STOP UPLOAD」と表示し、この間RC信号モニタや時計は動作しません。
Googleドライブへの記録は失敗すると3回までリトライします。最終的に成功したか失敗したかはSDカードに記録します。なお稀にですがサーバが正常に受付けて成功した旨の通知を返したのにM5Stackまで届かなかった時はリトライするので複数回の記録が上がってしまいます。その場合はSDカードのログを参照しながら手動でGoogleドライブ上のデータを修正する必要があります。

M5StackのCore2にはボタンがA,B,Cの3つ搭載されています(このボタンは物理的な接点ではなくタッチセンサーになっていて、押した感触が伝わりにくいですがちゃんとボタンとして機能します)。
基本画面ではボタンCを長押しすると設定画面に移ります。
ボタンA,Bには機能を割り当てていませんが、スクリーンセーバーからの復帰には反応します。

設定画面(MAIN MENU)
上から時計設定、電源OFF、機体選択、飛行場所選択、メニュー終了です。
反転文字になっているところが現在対象となっている行で、ボタンAを押すと上、Bを押すと下の行に移動し、Cを押すと選択されます。
「電源OFF」を選択するとシステムの電源を切ります。「EXIT MENU」を選択すると基本画面に戻ります。
時計設定、機体選択、飛行場所選択の各画面を以下で説明します。

時刻設定画面
ボタンA,Bを押すと反転文字になっている部分の値が上下に変化します。ボタンCは決定ボタンで次の値に進みます。年月日~秒まで進み、次にボタンCを押すと図に「NEXT」と表示された部分に移ります。ここではボタンA,Bを押すと「NEXT」、「SAVE&EXIT」、「EXIT:NonSAVE」と順に変化して行きます。それぞれの状態でボタンCを押すと以下の動作をします。
・NEXT:最初の「年」の設定に戻ります。
・EXIT:NonSAVE:時刻は変更せずにメインメニューに戻ります。
・SAVE&EXIT:内臓時計に設定時刻をセットし、メインメニューに戻ります。

機体選択
ボタンA,Bで対象行を上下させ、ボタンCで選択すると機体が選択されてメインメニューに戻ります。

飛行場所選択
ボタンA,Bで対象行を上下させ、ボタンCで選択すると飛行場所が選択されてメインメニューに戻ります。

ログ

実行後はSDカードのLOGFILEで指定したファイル名に以下の様なログが残っています。

TakeOff,2023-03-05 22:46:36                  ←離陸時刻
Upload success,2023-03-05 22:46:36 ←離陸をGoogleドライブにアップロード成功
Landing,2023-03-05 22:47:13 ←着陸時刻時刻
Upload success,2023-03-05 22:47:13 ←着陸ををGoogleドライブにアップロード成功

Googleドライブ上には(アップロードしていれば)次の様なログが残ります。

スケッチ

HOILog20230306.zip

※このソフトウェアを使用されてもし問題が発生しても責任は持てませんのでそのあたりはよろしくお願いします。

JDL2022R4 宮崎戦に参加

今年も行ってきました。JDL2022 Round4。宮崎での開催です。

JDL(ジャパン・ドローン・リーグ)は年間7戦のレースが開催され、各レースのポイント合計で年間の成績が決まるという仕組みです。この7戦は九州から北海道まで日本の各地で開催され、第4戦は宮崎開催なのです。
九州ではここだけなので、毎年1度だけ宮崎戦に参加しています。

機体

今回使った機体は昨年とほぼ同じ。ベースは息子の「お古」であるEachin製激安レース機Tyro99をベースに色々いじくった物です。

他に予備機(こちらも「お古」)も持って行ったけど
今回壊さなかったので、この1台で済みました。


また当然ながらフライトコントローラー(以下FCと略す)はHOIHOI-FC Rev2を載せています。
昨年はこのFCがマトモに動作するかドキドキでしたが、もうそこまでの心配はなくなりました。また、前回投稿した様に予備FCも準備しています。

先日作成したF722搭載のFC。
まだ実績が少ないので予備とします。

でもまぁ、いい加減な機体ですよね。ウラから見るとベニヤ板を使っていたり。。。
JDLの中の人、A2Cさんにも心配してもらって色々とアドバイスして頂きました。(昨年はプロペラを逆につけて練習フライトを飛べなかったり、今回の練習フライトでもVTXのアンテナコネクタが抜けて映像が極端に弱かったり、 色々とやらかしてますからねー。 )
こんな感じでドローンレースは初心者には優しいのです。

そして第一日目・・練習日

第一日目は練習日で5回の練習フライトが出来ました。練習フライトは予選と同じ形式なので90秒間に何周飛べるかを競います。90秒を過ぎて次に計測ゲートを追加した時の周回数が記録となるのです(同じ周回数の人同士ではタイムが早い方が上位となります)。
私が参加するオープンクラスは一番初心者向けのクラスですが上位の人は5周回ります。私は5回の練習フライトの内、ベストが3周でした。
本番では4周行きたいですねー。


いよいよ第二日目・・本番

予選は2回のフライトを行い良い方の記録が採用されます。
まず一回目スタート・・・しかし直後にゴーグルがずれてきて画像が見づらくなってきました。両手は送信機を操作しているのでゴーグルを修正する事はできません。しかしどんどん酷くなってくるので2周目の直線で速度を緩めてゴーグルを修正し、その後は良く見える様になったのですが、結局3周でゴールです。次からはゴーグルのベルトをもっときつく調整しておきます。

そして予選二回目スタート。 今回はゴーグルもずり落ちてはこないし、予選落ちすればこのフライトで終りなので後の事は考えずに速度を上げます。するとまあそれなりに飛べていますね。
という事で4周でゴール!一応本日の目標は達成です。

レースの結果

あとは結果発表待ち。この間に予選1回目の結果を見ると18人中10位でした。9位までに入れば予選突破なのであと一つ。
予選1回目は3周飛んで10位だったので、4周飛べた2回目では順位が一つ上がれば予選通過できるはず(無謀にも期待してしまうのでした)。
で、結果が発表されると結局は予選落ち。・・・順位的には10位のままで、やっぱり皆さん2回目はタイムが上がってるんですね。

あと一つで予選通過と考えると惜しいのですが、タイムを見ると9位の人との差は約7秒もあり、これから考えるとそんなに惜しくもないです。
もっと精進するしかありません。

そして・・・

という事で天候にも恵まれ、適度に風が吹いたので暑さもそこまで厳しくもなく、年に一度のお祭りが終了しました。
また色々な人と話していると新たに作りたいものが次々と出てきて、そちらの面でも収穫がありました。

会場の「こどものくに」はすぐ横が遠浅のビーチです。浜に出てみると泳いでいるレース参加者もいました。

いいとこですねー。

フライトコントローラーを自作してみる。~その16~ JDLで飛ばす。

自作フライトコントローラーの目標の一つにレースで飛ばすというのがありました。
そこで今回 JDL(ジャパン・ドローン・リーグ) 2021年Round4の宮崎戦に息子と共に参加してきました。
実は昨年の宮崎戦にも参加したのですが結果はボロボロで、今回は少しはマシに飛ばせるでしょうか? なお息子は今回本気で臨んでいます。

こんなコースです。

通常JDLは土・日の二日間あり、初日は練習日、二日目が実際のレースとなります。しかし今回は土曜日が雨(雷も!)のため中止となり、日曜日のみの開催となりました。実は中止を知らず早起きして宮崎まで行ってしまったので、初日は宮崎ドローンクラブSkyDRONEの方々と一緒に練習させていただきました。

なお私が飛ばす機体はこれ。
これTyro99というかなり安物で普通レースに使う人は見かけない機体をベースに、上側だけ載せ替えて軽量化したもので、元は息子のお古なのです。

ここに自作フライトコントローラー’HOIHOI-FC’を載せています。
がんばってくれよー(というか自分が操縦頑張らにゃならんのですが)。

緑の基板がHOIHO-FC

・・・そして日曜日。
時間を詰めて朝イチに一回だけ練習フライトが設けられる事になりました。

という事で早々に(一度きりの)練習フライトの順番が回ってきます。
スタート位置に機体を並べ、ゴーグルをつけて他の選手と3人で操縦席に座ります。そしてスタート・・・と思ったら私の機体はモーターだけブンブン回って離陸しません。なんと、プロペラ2枚を逆に取付けていたのです。やってもうた~!
他の選手はフライトしているのでコースに入る訳にはいかず、一度きりの練習フライトは飛べずに終わりです。

あとはぶっつけ本番で2回の予選フライトを飛ぶのみ。

そして予選フライト1回目。機体をセットした時に少しモーターを回して確認したので今回はちゃんと離陸しました。
操縦席の後ろで、以前我が家の工作室に来られた事のあるNONSAYAさん(井上さん)がアドバイスして頂けたので落ち着いて飛ばすことができました。
でもシミュレーターではもっとスロットルを開けれたんですがねー。実機だと辛うじて落ちずに飛んでいる程度です。結局既定の時間内にコースを2周して終了。
でもまあ、自作フライトコントローラーでJDLを飛ぶという目標は達成したので良しとしましょう。

私が参加しているオープンクラスは多くの人が規定時間内にコースを3周回ります。そして4周できれば予選通過というのが今回の目安になりそうです。
私としては次は3周を目指さねば(最初っから4周とは言わない)。

そして予選フライト2回目。
今度は先程よりもスロットルを開け気味で飛んだのですが、2周目の最終ゲート直前(ここって直角に曲がる初心者泣かせのポイントなのです)でフラッグに接触して墜落。リスタートして最終ゲートを通過したのですが約1.5秒足りず結局2周で終了です。

以上で私のJDL2021 Round4は終了しました。

息子はというと、9人が予選を通過できる内の8位で何とか準決勝に進んだ様です。
そして準決勝も他の選手がミスってくれたおかげで決勝に進み、この時点でオープンクラスからエキスパートクラスに昇格決定!
決勝戦ではもう飛ばすしかないという事で何か吹っ切れた様にスロットルを開けて2周目の時点では先頭を飛んでいたのですが、煙を吐いた機体が騒ぎになった(その瞬間息子の機体かと思ったのですが別の選手の機体でした)のに動揺してクラッシュ、何とかリスタートしたのですが結果は3位で終了です。

3位なので表彰状をもらっています。

結果として・・・
・自作フライトコントローラーでレースを飛べた。
・息子はエキスパートクラスに昇格した。
という事で収穫ありとしましょう。



フライトコントローラー自作関連の投稿一覧

フライトコントローラーを自作してみる。
フライトコントローラーを自作してみる。~その2~
フライトコントローラーを自作してみる。~その3~
フライトコントローラーを自作してみる。~その4~
フライトコントローラーを自作してみる。~その5~
フライトコントローラーを自作してみる。~その6~
フライトコントローラーを自作してみる。~その7~ リフロー炉
フライトコントローラーを自作してみる。~その8~
フライトコントローラーを自作してみる。~その9~ 動作確認
フライトコントローラーを自作してみる。~その10~ FPVで飛ばす。
フライトコントローラーを自作してみる。~その11~ Rev2基板
フライトコントローラーを自作してみる。~その12~ Rev2基板組み立て
フライトコントローラーを自作してみる。~その13~ Rev2基板動作確認
フライトコントローラーを自作してみる。~その14~ マイコンパワーアップ検討
フライトコントローラーを自作してみる。~その15~ 基板データ公開
フライトコントローラーを自作してみる。~その16~ JDLで飛ばす。
フライトコントローラーを自作してみる。~その17~ F7マイコンを載せる。
フライトコントローラーを自作してみる。~その18~ またまたF7
フライトコントローラーを自作してみる。~その19~ F7マイコン購入



フライトコントローラーを自作してみる。~その12~ Rev2基板組み立て

PCBGOGOからRev2基板が届きました。
が・・・ メタルマスクが裏面の分しか入っていません。発注内容を確かめると確かに裏面だけを注文していますね。
毎回なにかミスるなぁ。今回、基板自体は散々見直したんですけどね。

基板の裏/表。メタルマスクは裏面用のみ。

仕方ないのでメタルマスクの表面だけ再発注したところ、1週間せずに到着しました。早い!

メタルマスク表側

とにかく必要なものは揃ったので組立てに入ります。
机の上を片付けて適当な紙を敷きました。

こうやってマスクを被せた上からクリームハンダを塗るつもりなのですが・・・

クリームハンダがだいぶ固くなっています。
これって数か月で劣化してしまうらしいですね。一応冷蔵庫には入れていたのですが。

試しに無水エタノールを吹きかけて練り直してみると柔らかくなりました。
エタノールは何かと使うので、のどスプレーの空き容器に入れておくと便利です。

柔らかくなったのでメタルマスクの上から塗ってみます。

マスクを外すと・・・・なんか多くの箇所で短絡している。

柔らかくしすぎたかな。一旦クリームハンダをふき取ってやり直します。
少しアルコールを飛ばして適当な粘度になったところで塗りなおし(実際は何度かくりかえした)、大体いい感じになったと思うので部品を載せて・・・

リフローした結果がこれ。前回もそうでしたがマイコンのリードにブリッジができています。リフロー条件の問題か?
後から半田ゴテで修正します。

そして裏面も同様にリフローした後。こちらはブリッジは見られませんね。
なおU7と書いてあるところに部品が載ってませんが、これはBlackBOX用のFLASHメモリーを載せる場所で、部品の手持ちが少ないので一通り確認した後に手はんだで載せる予定です。

動作確認編へつづく・・・


フライトコントローラー自作関連の投稿一覧

フライトコントローラーを自作してみる。
フライトコントローラーを自作してみる。~その2~
フライトコントローラーを自作してみる。~その3~
フライトコントローラーを自作してみる。~その4~
フライトコントローラーを自作してみる。~その5~
フライトコントローラーを自作してみる。~その6~
フライトコントローラーを自作してみる。~その7~ リフロー炉
フライトコントローラーを自作してみる。~その8~
フライトコントローラーを自作してみる。~その9~ 動作確認
フライトコントローラーを自作してみる。~その10~ FPVで飛ばす。
フライトコントローラーを自作してみる。~その11~ Rev2基板
フライトコントローラーを自作してみる。~その12~ Rev2基板組み立て
フライトコントローラーを自作してみる。~その13~ Rev2基板動作確認
フライトコントローラーを自作してみる。~その14~ マイコンパワーアップ検討
フライトコントローラーを自作してみる。~その15~ 基板データ公開
フライトコントローラーを自作してみる。~その16~ JDLで飛ばす。
フライトコントローラーを自作してみる。~その17~ F7マイコンを載せる。
フライトコントローラーを自作してみる。~その18~ またまたF7
フライトコントローラーを自作してみる。~その19~ F7マイコン購入

フライトコントローラーを自作してみる。~その11~ Rev2基板

ブログを遡って読むと、ほぼ1年前からフライトコントローラー(以下FC)を作り始めていました。当初はFCを何度も壊すので自作して安く済まそうという魂胆でしたが、だんだんとFCを作る事自体が目的になっている気がします。

前回はRev1基板を使って3インチ機でFPVしたところまで書きました。その後5インチ機でも問題なく飛行できる事を確認しています(まあ3インチで飛べりゃ5インチでも飛べますよね)。

HOIHOIFC-F411 Rev1
ツギハギだらけです。パターンも何か無駄に遠回りしているところがあるし

という事で、Rev1基板の不具合修正や改良を加えたRev2基板を作っていきます。

まずはRev1基板の不具合点を振り返ると・・・

・USB信号のプラスとマイナスが入れ替わっていた。
・ブザー駆動トランジスタのピン配置を間違っていた。
・ブザー駆動トランジスタのベース100KΩという大きな抵抗値になっていた。
・DCDCコンバータ周りの配線が長すぎて電圧が揺れていた。
・取付穴位置を30mm角ジャストにしていた(一般的なサイズは30mmジャストではなく30.5mmでした)

当然ながらこれらは修正します。

BEC(DCDCコンバータ)について

バッテリー電圧から5Vを作り出すDCDCコンバーターICについて、前回はMonolithicPower社MP2359を使っていました。これは出力1.2A、最大入力24Vでしたが6セルバッテリーにすると耐圧が足りないのでMP1584に変更します。これだと出力3A、最大入力28Vです。
実際にはショットキーダイオードの3A品はサイズが大きいので2A品を使う事にして定格2A(瞬間的には3Aいける)BECです。
事前にMP1584を試した話はこの辺りに書きました。

左がMP2359,右がMP1584。
MP1584にするとだいぶ大きくなるなぁ。

DFUモード安定化

前回DFUモードに入りにくい(不安定)という問題があり、BOOT0に加えてBOOT1端子もLに落としたりしてみましたが今ひとつすっきりしていませんでした。
でも今回原因が分かった気がします。
STM32マイコンはBOOT1端子=H状態で起動するとブートローダーが立上るのですが、この時USARTやCAN等、幾つかのシリアルポートに信号が来ているかどうかをチェックし、その後USBを見に行きます。 この時USART端子に信号が入っているとその端子からプログラム書き込み信号を待つ様になってしまいます。
STM32F411の場合、USART1と3がブートローダー端子として動作します。そしてRev1基板ではUSART1にSBUS受信機を接続していました。
恐らくこれが邪魔してUSBを受け付ける状態まで進めなかったのだと思います。なのでRev2基板ではSBUS受信をUSART6に変更します。
そういえば市販FCもUSART6にSBUSを入るのが多いと思ったら恐らくこの理由なんだと思います。

ジャイロ

前回InvenSenseMPU6500を使っていました。
どうやらこれだと感度が高すぎて振動対策をしっかりする必要があるらしく、市販FCは大抵MPU6000を使っています。
という事でRev2もMPU6000に変更します。
またMPU6500はリードが0.4mmピッチに対しMPU6000は0.5mmピッチなので実装し易くなる事も期待しています。

左がMPU6500、右がMPU6000。
これも見比べると差が大きい。

マイコン本体

これまで最初に入手した評価基板に合わせてSTM32F411を使ってきたので今回もこのマイコンで進めます。
でもよりクロック周波数が高いマイコンにSTM32F405があり、ピン配置を調べたら1か所だけ変更すれば載せ替え出来そうなので後で試せる様に作っておきます。更にSTM32F722にも同じパッケージの製品があり、これもピン配置がほぼ同じなので使えるかもしれません(でも値段が高いんですよね)。

モーターの数

Rev1では基本の4本に加え予備として2本のモーター出力端子を持っていました。これでヘキサコプターを作れる筈なのです。
そしてRev2では更に2本追加し計8本にするので、その内オクタコプターを試してみたいと思います。

その他

発振子を小型の物に変えたり部品の配置を変更したり、結局かなりの変更量となりました。

最終的な回路図はこれ

そして基板パターン設計(これが一番大変だった)。

部品配置を変更したのでちょっと余裕ができた。
やっぱり基板設計は最初の部品配置が大事ですねー。

基板発注

基板はPCBGOGOに発注します。約500円の格安基板で作る場合、FusionPCBだとソルダーレジストの最小値が0.4mmなのでマイコンやジャイロのピン間隔(0.5mm)に対しては無理があるのです。
これに対しPCBGOGOは0.1mmなので多分大丈夫。(ただし送料が若干高い気がするし、また面付けすると高くなるので用途によって使い分けてます)

つづく・・・


フライトコントローラー自作関連の投稿一覧

フライトコントローラーを自作してみる。
フライトコントローラーを自作してみる。~その2~
フライトコントローラーを自作してみる。~その3~
フライトコントローラーを自作してみる。~その4~
フライトコントローラーを自作してみる。~その5~
フライトコントローラーを自作してみる。~その6~
フライトコントローラーを自作してみる。~その7~ リフロー炉
フライトコントローラーを自作してみる。~その8~
フライトコントローラーを自作してみる。~その9~ 動作確認
フライトコントローラーを自作してみる。~その10~ FPVで飛ばす。
フライトコントローラーを自作してみる。~その11~ Rev2基板
フライトコントローラーを自作してみる。~その12~ Rev2基板組み立て
フライトコントローラーを自作してみる。~その13~ Rev2基板動作確認
フライトコントローラーを自作してみる。~その14~ マイコンパワーアップ検討
フライトコントローラーを自作してみる。~その15~ 基板データ公開
フライトコントローラーを自作してみる。~その16~ JDLで飛ばす。
フライトコントローラーを自作してみる。~その17~ F7マイコンを載せる。
フライトコントローラーを自作してみる。~その18~ またまたF7
フライトコントローラーを自作してみる。~その19~ F7マイコン購入

HOI-LINK高分解能化

以前我が家に来られた事のあるNONSAYAさん、当時はレーザー加工機の話題で盛り上がりましたが、今はドローンレース界の重鎮です。
そんなNONSAYAさんと最近Facebookでお話しする機会があり、コントローラーの分解能が何bit必要かという話になりました。
最近はVelociDrone(ドローンシミュレーター)を使ってオンラインのレース を開催されており、この時コントローラーからPCに送られる信号の分解能がプロレベルの速さでは影響するのではないかと。

OpenStickにしてもHOI-LINKにしても今のところ8bit幅でデータを送っています。一方実機のドローンでよく使われるS-BUS信号は11bit幅です。
私の素人的感覚では8bit幅(=256分解能)もあれば十分かと思っていましたが、レースのプロには影響するのかもしれません。

そこでHOI-LINKを高分解能化して試す事にしました。
HOI-LINKはラジコン受信機が出すS-BUS信号をPICマイコンで受け、USBのジョイスティック信号に変換してPCに送る仕組みになっています。
これを使えば実物のラジコン送信機を使ってドローンシミュレータの練習をしたり、PCに制御信号を送ったりできるモノなのです。

こんな仕組みです。

ここで先ほど書いた通りS-BUSからは11bit幅のデーターが送られてきます。これを8bitに変換するため下3bitは捨てて上位8bitだけをUSBに送っていました。これに対し高解像度版では11bit幅のデーターの下に5bit分の0を付加し、16bitデーターとしてUSBに送ります。
よってデーターは16bitで送りますがS-BUSの11bitから情報が増えるわけではないので結果的に11bit(=2048)分解能です。
なおラジコン送信機/受信機がスティック操作の変化を本当に11bit分解能で通しているかは不明です(ここで削られてたらどうしようもないのですが、どうなんでしょうね?)。

そして11bit版を使ってVelociDroneで飛んでみたところ・・・私レベルの感覚ではスムーズになった様な気もしますが自己暗示かもしれずよくわかりません。もうちょっとハイレベルな人に試してもらう必要があります。

実際にオンラインレースに出場されている方々の環境は8bitだったり11bitだったり様々だそうで、必ずしも11bitの人が勝つ訳でもない様です。

今回作成した高分解能版のファームとソースを下のリンクにアップロードしておきます(デバイス名の最後の’HR’はハイレゾのつもり)。
HOI-LinkHR20200615.zip

また受信機の機種によっては電源投入順序に制約がある問題(HOI-LINKをUSBに挿した後から送信機の電源を入れる順序でないと動作しない)が見つかったので修正しています。

なお以前はS-BUSに含まれる18ch分すべてをUSBに送り出していましたが今回のファームではチャンネル数を8bitに制限しています。
これには事情があって、ドローンシミュレーターで使うには問題ないのですが、Windowsの設定画面(下の図みたいなやつ)でみるとはアナログチャンネルは8chまでしか表示されず、一番大事なスティック操作が動いていない様に見えて気持ちが悪い上に、キャリブレーションができず、以前ARマーカーでドローン制御をしたときに影響があったので8CHにしてしまいました。

Windowsのこういう画面です

後半のチャンネルをデジタル値にしてやればいいのかも知れませんが、S-BUS信号は各チャンネルがアナログかデジタルかの見分けがつかないのでどれをデジタルにするか悩みます。で、実際には8chあればまず足りると思うので取り合えず8chまでにしています。
※もし18ch版必要な方がおられたらご連絡ください。

という事なのでもし8bitと11bitの違いを試してみようという場合は同じ土俵で比べるため下記のファームを比べてください。
HOI-LinkA20200614.zip ・・・8bit/8ch版
HOI-LinkHR20200614.zip ・・・11bit/8ch版 (上のリンクと同じ)

2020-06-15追記
HOI-LINKをPCに挿し送信機がONの状態でPCを立ち上げたときうまく動作しない問題が見つかったので修正しました。原因はUSBの通信が確立する前にSBUS信号を受けてUARTがオーバーフローしていたためで、初期化する処理を追加しました。
( 今回11bit版だけ修正しています。今後8bit版のメンテナンスは止めるつもり。)
HOI-LinkHR20200615.zip

どどーんはじめました。~その7~いろいろ修理

前回書いた通り11月に鹿児島県出水市で開催されるレースに出る為、日々練習をしております。
しかし実機を飛ばすと(または飛ばさなくても)色々な箇所を壊し、そして修理を繰り返しており、その記録です。

フライトコントローラー その1

フライトコントローラーOMNIBUSF4 V3を修理した話を先日書きました。
このFCは息子が逆電圧を印加してレギュレータICが壊れたので交換した物で、その他は一見問題なさそうなので暫くは木のフレームに積んで飛ばしていました。ところがある時から飛行中に訳もなく墜落したり、電源を入れても何も操作が出来なかったり、その内BetaFlightConfiguratorとも接続できなくなってしまいました。結局はファームを書き直したら復活したのですが、逆電圧のせいでフラッシュメモリが消えた(又は書いていないbitが書き込み状態になった?)のでしょうかね?
そもそも 逆電圧で壊れない方が不思議な気もしますが。
とりあえず様子見中です。

フライトコントローラーその2

同じ様に修理したフライトコントローラー(以下FC)がもう一つあります。
「Mini F3 Flytower」という名称でAliexpressから購入した物。購入時はESCとセットでしたがESCは燃えてしまって交換しています。
ところが元々のESCはBEC回路(5Vレギュレータ)を内蔵していたのに、交換後のESCはBECを搭載しておらず、FCの5V入力端子にバッテリー電圧(11.1Vや14.8V)が直接加わっていました。これで息子が飛ばしていたのですが、今回私がレースに出る為に借りたら上記の接続が発覚しました。とりあえず飛べはするのですがいつ壊れても不思議はありません。また5V端子に(高電圧の)電源が入っていますが本来バッテリ電圧を与えるはずの端子はオープンのままなのでOSD表示にバッテリー電圧が出ないという問題もあります。もちろん電圧低下アラームも出ないので非常に不安です。
そこで正しい接続(VBAT端子にバッテリーを接続)してみると・・・案の定レギュレータが壊れていてFC内の5V電源が出ていませんでした。
レギュレータの型番をみると先日修理したOMNIBUSF4V3と同じ型番のICを使用しています(FCでは標準的なICなんですかね?)。先日買ったICがまだ残っているので交換すると、ちゃんと5Vが出る様になりました。・・・という事でこのFCでレースに出場予定です(大丈夫か?)。

真ん中付近に写っている1F8のマーキングがあるのが交換したレギュレータIC。

木のフレーム

予備機として使用予定の木のフレームは相変わらずポキポキと折れていきます。しかし木のフレームの良いところはエポキシで修理できる点です。また原価が安いので沢山レーザーカットしておきどんどん交換していけます。 強度アップの工夫も色々としており今のところ4代目となりました。
が、やっぱり木製フレームでレースするのは無謀なのかも。

色々強度アップの工夫をした4代目フレーム。
縦に補強を入れてT字型の断面になっています。その分重くなるのを防ぐためアームを少し細くたりFCの下を肉抜きしたり・・・。

カーボンのフレーム

こちらは息子が折ったカーボンのフレーム。カーボンの板が折れると重ねた層が分離した様になるんですね。繊維が完全に切れている訳でもなさそうなので(いや多少は切れているんでしょうけど)、ダメ元で修理してみました。エポキシ接着剤をドライヤーで温めて柔らかくしておき、層の隙間に行き渡る様にした後、万力で挟んで固定したところ結構いい感じに固まっています。耐久性は分かりませんが。

VTX

練習していて息子の機体と空中衝突し、VTXの押しボタンスイッチとLEDが吹き飛んでいました。とりあえず電波は出ているので周波数や出力を変更しないならこのまま使えるのですが・・・これもその内なんとかしたいと思います。
しかしレースに間に合わないとマズイのでVTXは新たに発注しました。

FPVゴーグルのスポンジ

以前書いたEachineの安いゴーグルを使っていますが、顔に当たる部分のフェルトが剥がれてきました。スポンジとフェルトの2重構造になっているところが剥がれるのです。そこで「ボンドGPクリアー」で接着してもまたすぐ剥がれるので今度は「ボンドウルトラ多用途」で試したところ上手くついています。

他にも根本で電線が切れたモーターとかパワーMOSFETから煙を吐いたESCとか、なんとかしたいパーツが色々あるので、いずれ修理にトライしたいと思います。